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Abstract
Let V be a subvariety of a torus defined over the algebraic numbers. We give a
qualitative and quantitative description of the set of points of V of height bounded by
invariants associated to any variety containing V . In particular, we determine whether
such a set is or is not dense in V . We then prove that these sets can always be written
as the intersection of V with a finite union of translates of tori of which we control the
sum of the degrees.

As a consequence, we prove a conjecture by Amoroso and David up to a logarith-
mic factor.

1. Introduction
In this article, we study the distribution of the small points on varieties over Q
imbedded in the torus Gn

m with n ≥ 2. To simplify the presentation, we fix the usual
imbedding of Gn

m in Pn given by (x1, . . . , xn) → (1 : x1 : · · · : xn). A variety
V ⊆ Gn

m is the intersection of Gn
m with a variety of Pn defined over Q. Note that the

varieties that appear in this article are not necessarily irreducible or equidimensional,
but they are all defined over Q. We say that
� V is torsion if V is the translate of a subtorus by a torsion point;
� V is transverse if V is irreducible and is not contained in any translate of a

proper subtorus.
For a set S ⊆ Gn

m, we denote by S the Zariski closure of S in Gn
m. On Pn, we consider

the Weil logarithmic absolute height, denoted by h(·). For θ ≥ 0, we define

S(θ) = {
α ∈ S(Q) : h(α) ≤ θ

}
.

In the present work, we describe V (θ) in a qualitative and quantitative respect,
for different positive reals θ depending on V . Among other results, we prove several
sharp effective versions of the toric Bogomolov conjecture. Before we present our
main result, we give an overview of the developments around this problem.
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Assume that V is not a union of torsion varieties. The toric Bogomolov conjecture,
nowadays a theorem of Zhang, claims that

μ̂ess(V ) = inf
{
θ > 0 : V (θ) = V

}
> 0.

Let us introduce other important invariants of a variety V ⊆ Gn
m. The degree of

a subvariety of Gn
m is the degree of its Zariski closure in Pn. The obstruction index

ω(V ) is the minimal degree of a hypersurface containing V . By a result of Chardin
[C], for V equidimensional,

ω(V ) ≤ n deg(V )1/ codim(V ). (1.1)

Define δ(V ) as the minimal degree δ such that V is, as a set, the intersection of
hypersurfaces of degree at most δ. Finally, define δ0(V ) as the minimal degree δ0 such
that there exists an intersection X of hypersurfaces of degree at most δ0 such that any
irreducible component of V is a component of X. If V is equidimensional, then

ω(V ) ≤ δ0(V ) ≤ δ(V ) ≤ deg(V ) ≤ δ0(V )codim(V ). (1.2)

The first three inequalities are immediate. The last one follows from [P2, corollaire 5,
p. 357] (with m = n, S = Pn, and δ = δ0(V )).

Let V be a transverse subvariety of Gn
m. In [AD1], Amoroso and David conjecture

that

μ̂ess(V ) ≥ c(n)ω(V )−1

for some c(n) > 0. In [AD1, théorème 1.4], they prove that

μ̂ess(V ) ≥ c(n)ω(V )−1
(

log(3ω(V )
)−λ(codim(V ))

,

where λ(k) = (9(3k)k+1)k .
Their proof is long and involved. Mainly, they need an intricate descent argument,

which is hard to read for nonspecialists. This descent argument has been used on
several occasions by other authors. Our first achievement (Corollary 2.3) is a simple
and short proof of a sharp version of [AD1, théorème 1.4].

Following [BZ], we define V 0 as the complement in V of the union of all translates
of subgroups of positive dimension contained in V . Bombieri and Zannier [BZ] and
Schmidt [S] prove that, outside a finite set, the height on V 0(Q) is bounded from
below by a positive value that depends only on the ideal of definition of V and not on
the field of definition of V . Later, their bound was considerably improved by David
and Philippon [DP]. They consider an irreducible variety V ⊆ Gn

m ⊆ (P1)n ⊆ P2n−1.
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Let

q = (
2n+4 dim(V )+22 deg(V )(log(deg(V ) + 1))2/3

)7dim(V )

, (1.3)

where deg(V ) is the degree of the Zariski closure of V in P2n−1. David and Philippon
prove that the set V (q−3/4) is contained in a finite union of translates Bj of tori such
that Bj ⊆ V and

∑
deg(Bj ) ≤ q.

In [AD2], the following is conjectured.

CONJECTURE 1.1
Let V ⊆ Gn

m be an irreducible variety. There exists c(n) > 0 such that, for all but
finitely many α ∈ V 0(Q),

h(α) ≥ c(n)δ(V )−1 . (1.4)

More precisely, there exist c1(n), c2(n) > 0 and l ∈ N such that

V
(
c1(n)δ(V )−1

) ⊆
l⋃

j=1

Bj,

where the Bj ⊆ V are translates of tori and

l∑
j=1

deg(Bj ) ≤ c2(n)δ(V )n.

From a variant of [AD1, théorème 1.4], Amoroso and David deduced a bound of the
type (1.4) up to a logarithmic factor. More precisely, in [AD2] the authors defined
δ(V ) as the minimal degree δ such that V is, as a set, a component of the intersection
of hypersurfaces of degree at most δ. Note that their definition of δ(V ) coincides with
our definition of δ0(V ). In [AD2, théorème 1.5], they claimed that, according to their
notation, for all but finitely many α ∈ V 0(Q),

h(α) ≥ c(n)δ(V )−1
(

log(3δ(V ))
)−λ(n−1)

,

where c(n) > 0 and λ(k) = (9(3k)(k+1))k . We take the opportunity to mention here an
error in their approach. Using their definition of δ(V ), at [AD2, p. 561, point (a)] they
cannot ensure that V ′ is incompletely defined by forms of degree at most nDδ(V ). The
problem is the following. Let V be incompletely defined by forms of degree at most δ,
and let Z be a hypersurface of degree at most δ not containing V . Then an irreducible
component of V ∩ Z is not a priori incompletely defined by forms of degree at most
δ. Their proof can be corrected by defining δ(V ) as we have done here.
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The method of [AD2] cannot produce a bound for the sum of the degrees of the
translates. A close inspection of their proof shows that one can only bound the degree
of each translate B by a constant (depending on n) times δ(V )2codim(B)

.
The main result of this article provides a complete description of the points of

a variety V of height bounded by different invariants. Let V � Gn
m be a variety of

codimension k. We define

θ(V ) = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)
. (1.5)

We decompose V as a (reduced) union Xk ∪· · ·∪Xn, where Xj is an equidimensional
variety of codimension j . We allow the empty set as an equidimensional variety of
arbitrary codimension with no components and degree zero. Our main theorem is the
following.

THEOREM 1.2
Let V = Xk ∪ · · · ∪ Xn be as before, and let θ = θ(V ) be as in (1.5). Then

V (θ−1) = Gk ∪ · · · ∪ Gn,

where Gj is either the empty set or a finite union of translates Bj,i of tori of codimension
j such that δ0(Bj,i) ≤ θ . Moreover, for r = k, . . . , n,

r∑
i=k

θ r−i deg Gi ≤
r∑

i=k

θ r−i deg Xi ≤ θr .

The proof is based on a new induction that is simple and optimal (for more details on
the structure of the proof, see Section 2). Theorem 1.2 has interesting consequences.
First, it immediately implies Conjecture 1.1, up to a logarithmic factor. Especially, for
an equidimensional V of dimension d , the cardinality of the set V 0(θ−1) is bounded
by θd deg(V ) ≤ θn.

Second, it generalizes Conjecture 1.1 to all varieties, not only irreducible or
equidimensional ones.

A nice feature of Theorem 1.2 is that it provides a complete description of
V (θ(W )−1) for θ(W ) associated to any variety W containing V . More precisely, we
have the following.

COROLLARY 1.3
Let V ⊆ W be subvarieties of Gn

m. Let θ(W ) be as in (1.5). Then

V
(
θ(W )−1

) ⊆
⋃

Bj,
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where the Bj ⊆ W are translates of tori such that δ0(Bj ) ≤ θ(W ) and

∑
j

deg(Bj ) ≤ θ(W )n.

As a consequence, if there exists a component of V which is not contained in any
translate B ⊆ W with δ0(B) ≤ θ , then V (θ(W )−1) is not dense in V .

In other words, the distribution of the points on a variety V depends on the varieties
that contain V . For instance, suppose that V is irreducible. Choosing respectively
W = V , W an intersection of hypersurfaces of degree at most δ0(V ) such that V is a
component of W , and W a hypersurface of degree ω(V ) containing V , Corollary 1.3
describes the points of V of height bounded by the inverse of δ(V ), δ0(V ), and ω(V ),
up to a remainder term (see Corollaries 5.1 and 5.2). We note that, for transverse
varieties, Corollary 1.3 tells us that, for any W ⊇ V , the set of points of V of height
bounded by the inverse of δ(W ), up to a remainder term, is never dense.

In Section 5, we also clarify the situation with an example that shows that our
results are essentially sharp.

Our results have interesting applications.
Bombieri, Masser, and Zannier [BMZ] proved that the intersection of a transverse

curve C with the union of all algebraic subgroups of codimension two is a finite set.
A recent approach to this kind of problem makes use of an effective version of the
Bogomolov theorem (see [V] in the elliptic case and [H] in the toric case). More
precisely, using a bound for the cardinality of the set of small points on C one can
provide a bound for the intersection of C with a union of translated codimension-two
algebraic subgroups (see [H, Section 7]; for the elliptic case, see [V, Section 14]). In
Corollary 2.3, we give an upper bound for the number of points of height essentially
bounded by the inverse of ω(C). Our estimate improves the one used by Habegger. It
also suggests a sharp conjecture in the abelian case.

Let V be a subvariety of Gn
m. Following Schmidt [S], we denote by V u the union

of all torsion varieties contained in V . Let δ = δ(V ), and let N = (
n+δ

n

)
. In [S,

Theorems 1(ii), 2(iii)], Schmidt proves that V u is a union of

t ≤ (2δ)n(11δ)n
2

exp(4N!) (1.6)

torsion varieties. Polynomial bounds in δ are given in [DP], [R], and [AS]. Theorem 1.2
allows us to further improve these results. In Corollary 5.4, we prove that

t ≤ δn
(
200n5 log(n2δ)

)n2(n−1)2

.

In addition, a bound for the cardinality of the set of small points of V 0 is used in
the proof of a quantitative version of the Mordell-Lang plus Bogomolov problem. Let
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� be a subgroup of Gn
m of finite rank. Let ε ≥ 0. We consider the neighborhood of �,

�ε = {
α ∈ Gn

m : α = xz with x ∈ � and h(z) ≤ ε
}
.

The Mordell-Lang plus Bogomolov theorem (see [Po]) asserts that V ∩�ε is contained
in a finite union of translates of subtori contained in V . Evertse [E] and Rémond [R]
give a quantitative version of this result. To estimate the number of “small points” in
V ∩ �ε, they need a bound for the cardinality of V 0(C) ∩ �ε for C ≥ 1.

A first bound for the cardinality of V 0(C) ∩ � appears in [S, Theorem 5]. Later,
David and Philippon (see [DP, théorème 1.4]) improve Schmidt’s result obtaining

|V 0(C) ∩ �| ≤ Crqr+1,

where q is as in (1.3). The method of Schmidt can be easily extended to the case
ε > 0. Using the bound given in Theorem 1.2, we deduce the following.

COROLLARY 1.4
Let � be a subgroup of Gn

m of finite rank r , and let V � Gn
m be a subvariety of

codimension k. As in (1.5), let

θ(V ) = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)
.

Then for C ≥ 1 and for any nonnegative ε ≤ (2θ(V ))−1,

|V 0(C) ∩ �ε| ≤ (5nC)rθ(V )n+r .

With respect to [DP, théorème 1.4], our bound improves not only the dependence
on deg(V ) but also the dependence on n, at least for varieties of large dimension or
degree.

In the special case of a linear variety, Corollary 1.4 can be used to improve
considerably the upper bound by Evertse, Schlickewei, and Schmidt [ESS] for the
number of nondegenerate∗ solutions of the equation

a1α1 + a2α2 + · · · + anαn = 1 with α ∈ �, (1.7)

where (a1, . . . , an) ∈ Gn
m(K) and � is a subgroup of Gn

m(K) of finite rank r (K is any
field of characteristic zero). Their bound is exp((6n)3n(r + 1)). Using Corollary 1.4,
this can be improved to (8n)4n4(n+r+1), saving an exponential (see Theorem 6.2). As
an application of this estimate, we also improve by one exponential the result on
multiplicities for a simple linear recurrence sequence of [ESS] (see Corollary 6.3).

∗A solution is called nondegenerate if no subsum of the left-hand side of (1.7) vanishes.
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In Section 2, we detail the structure of the article. In Sections 3 and 4, we prove
the theorems that lead to the proof of Theorem 1.2, and we present their corollaries.
In Section 5, we prove our main theorem and its corollaries. In the last section, we
discuss some applications to the Mordell-Lang plus Bogomolov problem.

2. Structure of the article
The proof of an effective Bogomolov conjecture given in [AD1] is long and technical.
It relies on the fact that V is, in some sense, p-adically close to ζV for all p-torsion
points ζ . But also all the translates of V by p-torsion points are p-adically close
to each other. This gives a first simplification: we replace the vanishing principle
used in [AD1] by a symmetric vanishing principle. For technical reasons, it is more
convenient to use an interpolation determinant than an auxiliary function. This is
presented in Section 3.1, where we encode the Diophantine information needed for
the proof of Theorem 2.2. The main result of Section 3.1 is Proposition 3.2. It gives an
inequality involving some parameters, the essential minimum of a subvariety of Gn

m,
and two Hilbert functions.

The new key idea to decode the Diophantine information is to use sharp estimates
for the Hilbert function. The upper bound is a variant of the main result of [C]. It
is proved in [AD1, lemme 2.5]. The lower bound is a deep result of Chardin and
Philippon [CP, corollaire 3]. In Section 3.2, we use these tools to prove the following.

THEOREM 2.1
Let V be an irreducible subvariety of Gn

m of codimension k which is not a translate
of a subtorus. Let

θ0 = δ0(V )
(
27n2 log(n2δ0(V ))

)kn
.

Then V (θ−1
0 ) is contained in a hypersurface Z of degree at most θ0 which does not

contain V . In particular, V (θ−1
0 ) ⊆ V ∩ Z � V and μ̂ess(V ) ≥ θ−1

0 .

A preliminary version of Theorem 2.1 was proved in [A]. That manuscript is super-
seded by the present article; therefore it will not be published. A priori, it is difficult to
compare Theorem 2.1 with [AD1, théorème 1.4]. On the one hand, in Theorem 2.1 we
do not assume that V is transverse but only that V is not a translate of a subtorus. On
the other hand, the bound in Theorem 2.1 depends on δ0(V ), which could potentially
be equal to the degree of V , while

ω(V ) ≤ n deg(V )1/ codim(V ).
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An innovative reduction process, due to Viada and based on Theorem 2.1 applied
to each variety involved, allows us to deduce [AD1, théorème 1.4]. In Section 4, we
prove the following more general result.

THEOREM 2.2
Let V0 ⊆ V1 be subvarieties of Gn

m of codimensions k0 and k1, respectively. Assume
that V0 is irreducible. Let

θ = δ(V1)
(
200n5 log(n2δ(V1))

)(k0−k1+1)k0n
.

Then either
� there exists a translate B of a subtorus such that V0 ⊆ B ⊆ V1 and δ0(B) ≤ θ ,

or
� there exists a hypersurface Z of degree at most θ such that V0 �⊆ Z and

V0(θ−1) ⊆ Z. Then V0(θ−1) ⊆ V0 ∩ Z � V0 and clearly μ̂ess(V0) ≥ θ−1.

This result has remarkable consequences. The most immediate corollary is an im-
proved and explicit version of [AD1, théorème 1.4].

COROLLARY 2.3
Let V ⊆ Gn

m be an irreducible variety of codimension k. Assume that V is not
contained in any translate B of a proper subtorus with δ0(B) ≤ θ for

θ = ω(V )
(
200n5 log(n2ω(V ))

)k2n
.

Then V (θ−1) is contained in a hypersurface Z of degree at most θ such that V �⊆ Z.
As a consequence, we have μ̂ess(V ) ≥ θ−1 for a transverse V and

|C(θ−1)| ≤ θ deg C

for a transverse curve C.

Proof
By definition of ω(V ), there exists an irreducible hypersurface W of degree ω(V )
containing V . As W is a hypersurface, δ(W ) = deg W = ω(V ). Apply Theorem 2.2
with V0 = V , V1 = W , k0 = k, and k1 = 1. Then V (θ−1) is contained in a
hypersurface Z of degree at most θ such that V �⊆ Z. �

We observe that the proof of the main result of [AD1] requires several technical tools,
namely, the absolute Siegel lemma of Zhang (see [DP, lemme 4.7]) and an involved
variant of the zero lemma of Philippon (see [AD1, théorème 4.2, corollaire 4.4]). The
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final step of their proof is a complicated descent argument. We avoid all these tools,
presenting a short proof relying on basic geometric arguments.

Although our main theorem (Theorem 1.2) contains an improved and explicit
version of [AD2, théorème 1.5], we would like to deduce such a corollary as an
immediate consequence of Theorem 2.2.

COROLLARY 2.4
Let V ⊆ Gn

m be an irreducible variety of dimension d . Define

θ = δ(V )
(
200n5 log(n2δ(V ))

)(d+1)n2

.

Then V (θ−1) is a finite union of translates Bj of subtori with δ0(Bj ) ≤ θ .

Proof
Let V0 be one of the finitely many irreducible components of V (θ−1). Then
V0(θ−1) = V0. Apply Theorem 2.2 to the component V0 and to V1 = V . We have
k0 ≤ n and k1 = n− d . Thus (k0 − k1 + 1)k0n ≤ (d + 1)n2. It follows that V0(θ−1) is
contained in a translate B of a subtorus such that B ⊆ V and δ0(B) ≤ θ . Varying V0

over all components of V (θ−1), we conclude that V (θ−1) ⊆ ⋃
Bj , where Bj ⊆ V

are translates of subtori with δ0(Bj ) ≤ θ . Remark 2.5(ii) gives V (θ−1) = ⋃
Bj . �

A quantitative description of the small points of V arises from a refined induction
based on Theorem 2.2, due to Viada. This leads us to the proof of our main theorem,
Theorem 1.2 (see Section 5).

We conclude this section by a simple remark which proves useful in Sections 4
and 5. On a translate of a subtorus, the small points are either dense or the empty set.

Remark 2.5
(i) Let B be a translate of a subtorus. Then, for ε ≥ 0, either B(ε) is empty or it

is dense in B.
(ii) Let V ⊆ Gn

m be an irreducible variety, and let ε > 0. Assume that V (ε) is
contained in a finite union of translates of subtori contained in V . Then V (ε)
is the union of some of these translates.

Proof
We prove the first assertion. If B(ε) is nonempty, we can choose α ∈ B(ε). Then
B = T α for T a subtorus. Note that T (0) is the set of torsion points of T . Since T is
a torus, we have T (0) = T . As h(αζ ) = h(α) for any torsion point ζ ∈ Gn

m, we have

α T (0) ⊆ B(ε) ⊆ B.

This shows that B(ε) is Zariski dense in B.
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We now prove the second assertion. By assumption, V (ε) is contained in the
union of translates of subtori contained in V . Among those translates, choose only
the translates B1, . . . , Bk which meet V (ε). Then V (ε) ⊆ B1 ∪ · · · ∪ Bk and Bi(ε) is
nonempty. By part (i), for i ∈ {1, . . . , k},

Bi = Bi(ε) ⊆ V (ε) ⊆
k⋃

j=1

Bj . �

3. Diophantine analysis

3.1. Encoding the information
We denote x = (x0, . . . , xn). Given a multi-index λ = (λ0, . . . , λn) ∈ Nn+1, we define
xλ = x

λ0
0 · · · xλn

n . Let I ⊂ Q[x] be a homogeneous reduced ideal. For ν ∈ N, we denote
by H (Q[x]/I ; ν) the Hilbert function dim[Q[x]/I ]ν . Let T be a positive integer. We
denote by I (T ) the T -symbolic power of I (i.e., the ideal of polynomials vanishing on
the variety defined by I with multiplicity at least T ). Let V be a variety of Gn

m. Let
I be a radical homogeneous ideal in Q[x] defining a closed subvariety of Pn whose
intersection with Gn

m is V . By abuse of notation, we set H (V ; ν) = H (Q[x]/I ; ν)
and H (V, T ; ν) = H (Q[x]/I (T ); ν).

The following lemma is one of the key argument of our approach.

LEMMA 3.1
Let ν, T be positive integers. Let W = {α1, . . . , αL} ⊆ Gn

m(C) be a finite set, and let
λ1, . . . , λL ∈ Nn+1 be multi-indices of weight ν. Define

T0 := (
L − H (W, T ; ν)

)
T .

Then the multihomogeneous polynomial

F (x1, . . . , xL) = det(xλj

i )1≤i,j≤L

vanishes on (α1, . . . , αL) ∈ WL with multiplicity at least T0.

Proof
We assume that λi �= λj for i �= j . Otherwise, F is identically zero, and the proof is
clear. If H (W, T ; ν) ≥ L, the assertion is obvious. Assume that H (W, T ; ν) < L, and
let L0 = L − H (W, T ; ν). Let E1, E2 ⊆ Q[x0, . . . , xn]ν be, respectively, the vector
space generated by xλ1, . . . , xλL and the vector space of homogeneous polynomials of



SMALL POINTS ON SUBVARIETIES OF A TORUS 417

degree ν vanishing on W with multiplicity at least T . Then

dim(E1) = L,

dim(E2) =
(

n + ν

n

)
− H (W, T ; ν),

dim(E1 + E2) ≤
(

n + ν

n

)
,

whence

dim(E1 ∩ E2) = dim(E1) + dim(E2) − dim(E1 + E2)

≥ L − H (W, T ; ν) = L0.

Thus, there exist L0 linearly independent polynomials

G1 =
L∑

j=1

g1j xλj , . . . , GL0 =
L∑

j=1

gL0j xλj

vanishing on W with multiplicity at least T . Without loss of generality, we can assume
that

det(gk,j ) 1≤k≤L0
L−L0<j≤L

�= 0.

By elementary operations, we replace the last L0 columns of the matrix (xλj

i ) by

τ
(
Gk(x1), . . . , Gk(xL)

)
, k = 1, . . . , L0.

Let F ′(x1, . . . , xL) be the determinant of the new matrix. Then

F ′(x1, . . . , xL) = cF (x1, . . . , xL)

for some c ∈ C∗. The polynomials Gk vanish on W with multiplicity at
least T . Developing F ′(x1, . . . , xL) with respect to the last L0 columns, we see
that F ′(x1, . . . , xL) vanishes on (α1, . . . , αL) ∈ Pn(C)L with multiplicity at least T0.�

Let l be a positive integer. We denote by [l] : Gn
m → Gn

m, α �→ (αl
1, . . . , α

l
n) the

“multiplication by l.” Let ker[l] be its kernel. The following inequality is the crucial
result of this section.

PROPOSITION 3.2
Let ν and T be positive integers, and let p be a prime number. Let V be a subvariety
of Gn

m. Then

μ̂ess(V ) ≥
(

1 − H (V, T ; ν)

H (ker[p] · V ; ν)

)T log p

pν
− n

2ν
log(ν + 1). (3.8)
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Proof
Choose any real ε such that ε > μ̂ess(V ). For simplicity, we define S = V (ε). Then
S is Zariski dense in V . We consider the (possibly infinite) matrix

(βλ) β∈ker[p]·S
λ∈Nn+1, |λ|=ν

of rank L = H (ker[p] · V ; ν). We select β1, . . . , βL ∈ ker[p] · S and λ1, . . . , λL

with |λj | = ν such that

det(β
λj

i )i,j=1,...,L �= 0.

Consider α1, . . . , αL ∈ S such that βj ∈ ker[p]αj . We set

F (x1, . . . , xL) = det(xλj

i )i,j=1,...,L ∈ Z[x1, . . . , xL].

It follows that F (β1, . . . , βL) �= 0. By Lemma 3.1, F vanishes on (α1, . . . , αL) with
multiplicity at least

T0 := (
L − H ({α1, . . . , αL}, T ; ν)

)
T ≥ (

L − H (V, T ; ν)
)
T .

Let v be a place dividing p. Recall that the inequality |1 − ζ |v ≤ p−1/(p−1) holds for
every pth root of unity ζ . Thus

|αj,k − βj,k|v ≤ p−1/(p−1)|αj,k|v
for j = 1, . . . , L and k = 1, . . . , n. Thus, by Taylor expansion of F around
(α1, . . . , αL),

|F (β1, . . . , βL)|v ≤ p−T0/(p−1)
L∏

j=1

|αj |νv,

where |αk|v = max{1, |αj,1|v, . . . , |αj,n|v}.
By the ultrametric inequality for v � ∞ and by the Hadamard inequality for v | ∞,

we obtain that, for an arbitrary place v,

|F (β1, . . . , βL)|v ≤
⎧⎨
⎩

∏L

j=1 |βj |νv if v � ∞,

LL/2
∏L

j=1 |βj |νv if v | ∞.

Since αk is a translate of βk by a torsion point, |βk|v = |αk|v . We apply the product
formula:

0 ≤ −T0 log p

p − 1
+ L

2
log L + ν

L∑
j=1

h(αj ) ≤ −T0 log p

p
+ L

2
log L + νLε.



SMALL POINTS ON SUBVARIETIES OF A TORUS 419

Moreover, L ≤ (ν + 1)n. Thus

ε ≥ T0 log p

Lpν
− n

2ν
log(ν + 1).

Taking the limit for ε which tends to μ̂ess(V ), we obtain the wished bound. �

3.2. Decoding the information
As announced in Section 2, to prove Theorem 2.1 we need an upper bound for the
Hilbert function. Proposition 3.3 follows from a result of Chardin [C].

PROPOSITION 3.3
Let V ⊆ Pn be an irreducible variety of dimension d and codimension k = n − d .
Let ν and T be positive integers. Then

H (V, T ; ν) ≤
(

T − 1 + k

k

)(
ν + d

d

)
deg(V ).

Proof
See [AD1, lemme 2.5]. �

We also need a sharp lower bound for the Hilbert function. This is a deep result of
Chardin and Philippon.

THEOREM 3.4 ([CP, corollaire 3])
Let K be a field, and let A = K[x0, . . . , xn]. Let I, J ⊆ A be two homogeneous
ideals with J of codimension r . Let d1 ≥ · · · ≥ dm be positive integers. Assume that
(i) I = (F1, . . . , Fm) with deg Fj = dj ;
(ii) J contains the intersection of the primary components of codimension r of I .
Then, for ν > d1 + · · · + dr − r , we have

H (A/J ; ν) ≥ deg J ·
(

ν + n − (d1 + · · · + dr )

n − r

)
.

As a corollary, we have the following.
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COROLLARY 3.5
Let V ⊆ Pn be an equidimensional variety of dimension d and codimension k = n−d .
Define m = k(δ0(V ) − 1). Then, for any ν > m, we have

H (V ; ν) ≥
(

ν + d − m

d

)
deg(V ).

Proof
In Theorem 3.4, we choose for J the ideal of definition of V , and r = k is the
codimension of V . Furthermore, we choose for I an ideal defined by forms of degree
at most δ0(V ) such that all components of V are components of the zero set of I . �

Let V be an irreducible variety of Gn
m ⊆ Pn, and let p be a prime number. In order to

prove Theorem 2.1, we apply Corollary 3.5 to V ′ = ker[p] ·V . Therefore, we need an
upper bound for δ0(V ′) and a lower bound for deg(V ′). These bounds are the object
of Lemma 3.8.

LEMMA 3.6
Let X1, . . . , Xt be subvarieties of Gn

m. Then δ
( ⋃

j Xj

) ≤ ∑
j δ(Xj ).

Proof
It is enough to prove this lemma with t = 2. Let f1, . . . , fa be equations of degree
at most δ(X1) defining X1. Similarly, let g1, . . . , gb be equations of degree at most
δ(X2) defining X2. Then X1 ∪ X2 is defined by the equations figj with 1 ≤ i ≤ a

and 1 ≤ j ≤ b. �

Let V and X be subvarieties of Gn
m. Assume that V is irreducible. We say that

� V is imbedded in X if there exists an irreducible component W of X such that
V � W .

In other words, V is imbedded in X if V ⊆ X and V is not a component of X.

Remark 3.7
Let V be irreducible. Assume that V is imbedded in X.
(i) Let X ⊆ X′. Then V is imbedded in X′.
(ii) Let ζ ∈ Gn

m. Then ζV is imbedded in ζX.
(iii) Let X1, . . . , Xt be subvarieties of Gn

m, and let V be imbedded in
⋃

j Xj . Then
V is imbedded in at least one of the Xj .
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LEMMA 3.8
Let V be an irreducible subvariety of Gn

m. Let G ⊆ Gn
m be a finite group.

(i) There exists a variety X′ such that
• V ⊆ X′,
• δ(X′) ≤ δ0(V ), and
• ζV is a component of X′ for all ζ ∈ G such that ζV ⊆ X′.

(ii) Let t be the number of irreducible components of V ′ = G · V . Then

deg(V ′) = t deg(V ) and δ0(V ′) ≤ tδ0(V ).

Proof
First, we prove (i). By definition of δ0(V ), there exists a variety X defined by equations
of degree at most δ0(V ) such that V is a component of X. Let S be the set of ζ ∈ G

such that ζV is imbedded in X. Then V ⊆ ζ−1X. We define

X′ = X ∩
⋂
ζ∈S

ζ−1X.

Note that V ⊆ X′. Furthermore, the varieties X and ζ−1X are intersections of
hypersurfaces of degree at most δ0(V ). Thus δ(X′) ≤ δ0(V ).

We show that no translate ζV is imbedded in X′. Assume by contradiction that
ζV was imbedded in X′ for some ζ ∈ G. We prove that 1 ∈ S. Then V would be
imbedded in X, which contradicts the fact that V is a component of X. Since ζ has
finite order, to prove 1 ∈ S it is sufficient to prove that ζ n ∈ S for all positive integers
n. We proceed by induction. Since X′ ⊆ X, ζV is imbedded in X and ζ ∈ S. We now
assume that ζ n ∈ S for some n ≥ 1, and we prove that ζ n+1 ∈ S. Since X′ ⊆ ζ−nX,
ζV is imbedded in ζ−nX. Thus ζ n+1V is imbedded in X and ζ n+1 ∈ S.

We now prove (ii). Let ζ1V, . . . , ζtV be the components of V ′. Clearly, deg(V ′) =∑
j deg(ζjV ) = t deg(V ). Let j ∈ {1, . . . , t}. By part (i) (with ζjV instead of V ),

we can choose a variety Xj such that ζ jV ⊆ Xj and δ(Xj ) ≤ δ0(V ). Furthermore, if
ζV ⊆ Xj for some ζ ∈ G, then ζV is a component of Xj . Thus, in view of Remark
3.7(iii), ζ 1V, . . . , ζ tV are components of X1 ∪ · · · ∪ Xt . By Lemma 3.6,

δ0(V ′) ≤ δ(X1 ∪ · · · ∪ Xt ) ≤ tδ0(V ). �

The stabilizer of a variety V is

Stab(V ) = {α ∈ Gn
m : αV = V }.

We denote by Stab(V )0 the connected component of Stab(V ) through the neutral
element. We recall that dim(Stab(V )) ≤ dim(V ) with equality if and only if V is a
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translate of a subtorus. In addition,

deg
(

Stab(V )
) ≤ deg(V )δ(V )dim(V ) ≤ deg(V )dim(V )+1. (3.9)

We also recall the following.

LEMMA 3.9
Let l be an integer coprime with [Stab(V ) : Stab(V )0]. Then ker[l] · V is a union of
lcodim(Stab V ) distinct components (which are translates of V by l-torsion points).

All the previous statements concerning stabilizers are proved in [Hi, lemme 6].
At last, we are ready to prove the main result of this section, Theorem 2.1. For

the convenience of the reader, we recall the statement.

THEOREM 2.1
Let V be an irreducible subvariety of Gn

m of codimension k which is not a translate
of a subtorus. Let

θ0 = δ0(V )
(
27n2 log(n2δ0(V ))

)kn
.

Then V (θ−1
0 ) is contained in a hypersurface Z of degree at most θ0 which does not

contain V . In particular, V (θ−1
0 ) ⊆ V ∩ Z � V and μ̂ess(V ) ≥ θ−1

0 .

Proof
Let d = n − k = dim(V ), and let δ0 = δ0(V ). In the sequel of the proof, we use
several times the fact that n > k ≥ 1. In particular, the inequality n ≥ 2 allows us to
improve numerical constants. Let

N = 1.41
(
13n2 log(n2δ0)

)k
.

We note that N ≥ 1.41 × 13 × 4 × log(4) > 101. By [RS, Theorems 9, 10],∑
p≤x log p ≤ 1.02x for x ≥ 1, and

∑
p≤x log p ≥ 0.84x for x ≥ 101. Thus

∑
N/1.41≤p≤N

log p ≥
(

0.84 − 1.02

1.41

)
N

≥ 0.11 · N

≥ 0.11 · (
13n2 log(n2δ0)

)k

≥ 0.11 · 13n · 2k log δ0

> nk log δ0.
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If for any prime p with N/1.41 ≤ p ≤ N we have

p | [Stab(V ) : Stab(V )0],

then

log[Stab(V ) : Stab(V )0] ≥
∑

N/1.41≤p≤N

log p > nk log δ0.

This is impossible because, by (3.9) and (1.2),

[Stab(V ) : Stab(V )0] ≤ deg
(

Stab(V )
) ≤ deg(V )dim(V )+1 ≤ δnk

0 .

We conclude that there exists a prime p � [Stab(V ) : Stab(V )0] satisfying

(
13n2 log(n2δ0)

)k ≤ p ≤ 1.41
(
13n2 log(n2δ0)

)k
. (3.10)

Since p � [Stab(V ) : Stab(V )0], Lemma 3.9 implies that the variety V ′ = ker[p] · V

is a union of pcodim(Stab V ) distinct components that are translates of V by a p-torsion
point. Since V is not a translate of a subtorus,

k + 1 ≤ codim(Stab V ) ≤ n.

By Lemma 3.8(ii),

deg(V ′) ≥ pk+1 deg(V ) and δ0(V ′) ≤ pnδ0. (3.11)

We apply Proposition 3.3 to V and Corollary 3.5 to V ′. As in the statement of
Corollary 3.5, let m = k(δ0(V ′) − 1). The upper bound for δ0(V ′) in (3.11) gives

m + 1 ≤ kpnδ0.

Choose

ν = md + m and T = [0.1p1+1/k].

Let f (n, k) = ((n + 1 − k)k)1/(nk). We have

∂f

∂k
= − 1

nk2

(
log

(
(n + 1 − k)k

) + k

n + 1 − k
− 1

)

and log((n + 1 − k)k) + k/(n + 1 − k) ≥ log n + 1/n > 1. Thus k �→ f (n, k) is
a decreasing function and f (n, k) ≤ f (n, 1) = n1/n ≤ 31/3. By the upper bound for
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m + 1 and for p (see (3.10)), we obtain

ν + 1 ≤ (d + 1)(m + 1) ≤ (n + 1 − k)kpnδ0

≤ (
f (n, k)1.411/k13n2 log(n2δ0)

)kn
δ0

≤ (
31/3 · 1.41 · 13n2 log(n2δ0)

)kn
δ0.

Note that 31/3 · 1.41 · 13 < 27. Thus

ν + 1 ≤ (
27n2 log(n2δ0)

)kn
δ0 = θ0 (3.12)

and

θ−1
0 < ν−1.

Let W be the Zariski closure of the set V (θ−1
0 ), and let W ′ = ker[p] · W . Then

μ̂ess(W ) ≤ θ−1
0 < ν−1. (3.13)

Furthermore, as W ⊆ V and W ′ ⊆ V ′,

H (W, T ; ν) ≤ H (V, T ; ν) and H (W ′; ν) ≤ H (V ′; ν).

We show that H (W ′; ν) < H (V ′; ν). Assume by contradiction that

H (W ′; ν) = H (V ′; ν). (3.14)

Apply Corollary 3.5 to the variety V ′, and apply Proposition 3.3 to the variety V .
Then, by the lower bound for deg(V ′) given in (3.11),

H (W, T ; ν)

H (W ′; ν)
≤ H (V, T ; ν)

H (V ′; ν)
≤

(
T −1+k

k

)(
ν+d

d

)
deg(V )(

ν+d−m

d

)
deg(V ′)

≤
(
T −1+k

k

)(
ν+d

d

)
(
ν+d−m

d

)
pk+1

.

By the choice T = [0.1p1+1/k], we have
(
T −1+k

k

) ≤ T k ≤ 0.1pk+1. Moreover, by the
choice ν = md + m,

(
ν + d

d

)(
ν + d − m

d

)−1

=
d∏

j=1

ν + j

ν − m + j
≤

(
1 + m

ν − m

)d

=
(

1 + 1

d

)d

≤ e.

Thus

H (W, T ; ν)

H (W ′; ν)
≤ 0.1e < 0.3.
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By Proposition 3.2 (with V replaced by W ),

μ̂ess(W ) ≥
(

1 − H (W, T ; ν)

H (W ′; ν)

)T log p

pν
− n

2ν
log(ν + 1)

≥
(0.7 T log p

p
− n

2
log(ν + 1)

)
ν−1. (3.15)

We still need a bound for 0.7 T log p/p and for (n/2) log(ν + 1). By the choice of T ,

0.7 T log p

p
≥ 0.7

(
0.1p1/k − 1

p

)
log p.

By the lower bound for p in (3.10),

0.7 T log p

p
≥ 0.7

(
0.1 · 13n2 log(n2δ0) − 1

13n2

)
k log(13n2)

≥ 0.7
(

0.1 · 13 − 1

13n4

)
n2 log(n2δ0) · k log(13n2).

Since n ≥ 2, we have

0.7
(

0.1 · 13 − 1

13n4

)
log(13n2) ≥ 0.7

(
0.1 · 13 − 1

13 · 16

)
log(13 · 4) > 3.5.

Thus

0.7 T log p

p
≥ 3.5kn2 log(n2δ0). (3.16)

Using (3.12), 27n2 ≤ 25n2 ≤ n7, and log x < x for x > 0, we get

n

2
log(ν + 1) ≤ n

2

(
kn log(n7 · n2δ0) + log(δ0)

) ≤ n

2
kn log(n9δ2

0).

Thus

n

2
log(ν + 1) ≤ 3kn2 log(n2δ0). (3.17)

Replacing (3.16) and (3.17) into (3.15), we get

μ̂ess(W ) ≥ 0.5kn2 log(n2δ0)ν−1 > ν−1.

This contradicts (3.13) and shows that

H (W ′; ν) < H (V ′; ν).
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Equivalently, there exists a homogeneous polynomial F of degree ν ≤ θ0 vanishing
on W ′ but not on V ′. Replacing F (x) by F (ζx) for a suitable ζ ∈ ker[p], we
can assume that F �= 0 on V . (Recall that W ′ is invariant by translation by
p-torsion points.) Let Z ⊆ Gn

m be the hypersurface defined by F . By construction
V0(θ−1

0 ) ⊆ W ⊆ W ′ ⊆ Z, V �⊆ Z and deg(Z) = ν ≤ θ0. This proves the
theorem. �

4. Qualitative description of the small points
In this section we prove Theorem 2.2. For the convenience of the reader, we recall the
statement.

THEOREM 2.2
Let V0 ⊆ V1 be subvarieties of Gn

m of codimensions k0 and k1, respectively. Assume
that V0 is irreducible. Let

θ = δ(V1)
(
200n5 log(n2δ(V1))

)(k0−k1+1)k0n
.

Then either
� there exists a translate B of a subtorus such that V0 ⊆ B ⊆ V1 and δ0(B) ≤ θ ,

or
� there exists a hypersurface Z of degree at most θ such that V0 �⊆ Z and

V0(θ−1) ⊆ Z. Then V0(θ−1) ⊆ V0 ∩ Z �⊆ V0 and clearly μ̂ess(V0) ≥ θ−1.

Proof
We simply denote δ = δ(V1). By contradiction, we suppose that the conclusion of
Theorem 2.2 does not hold. Thus

V0 is not contained in any translate B ⊆ V1 of a subtorus with δ0(B) ≤ θ , (4.18)

and

each hypersurface Z of degree at most θ such that V0(θ−1) ⊆ Z contains V0. (4.19)

For r ∈ {0, . . . , k0 − k1 + 1}, we define

Dr = δ
(
200n5 log(n2δ)

)rk0n
.

Since r ≤ k0 − k1 + 1, we have Dr ≤ θ . Using an inductive process on r , we are
going to construct a chain of varieties

X0 ⊇ · · · ⊇ Xr ⊇ Xr+1 ⊇ · · · ⊇ Xk0−k1+1

satisfying the following.
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CLAIM

We have
(i) V0 ⊆ Xr ;
(ii) each irreducible component of Xr containing V0 has codimension at least

r + k1;
(iii) δ(Xr ) ≤ Dr .

Theorem 2.2 is proved if we show this claim for r = k0 − k1 + 1. Indeed, by (i)
there exists an irreducible component W of Xk0−k1+1 which contains V0. By (ii),
codim W ≥ k0 + 1. This gives a contradiction.

We now define Xr and prove our claim by induction on r .
• For r = 0, we simply choose X0 = V1.
• We assume that our claim holds for some r ∈ {0, . . . , k0 − k1}, and we prove

that it holds for r + 1, as well. Let 0 ≤ s ≤ t be integers, and let W1, . . . , Wt be the
irreducible components of Xr enumerated in such a way that

V0 ⊆ Wj if and only if 1 ≤ j ≤ s.

Since V0 ⊆ Xr , we have s ≥ 1. Assertion (ii) of our claim for r implies that
r + k1 ≤ codim(Wj ) ≤ k0 for j = 1, . . . , s.

Let j ∈ {1, . . . , s}. Since δ(Xr ) ≤ Dr , the variety Wj is an irreducible component
of an intersection of hypersurfaces of degree at most Dr . Thus δ0(Wj ) ≤ Dr ≤ θ .
Moreover,

V0 ⊆ Wj ⊆ Xr ⊆ X0 = V1.

By assumption (4.18), Wj is not a translate of a subtorus. Let

θ0 = Dr

(
27n2 log(n2Dr )

)k0n
.

Note that δ0(Wj )
(
27n2 log(n2δ0(Wj ))

)kn ≤ θ0. In view of Theorem 2.1, the set
Wj (θ−1

0 ) is contained in a hypersurface Zj which does not contain Wj and such
that deg Zj ≤ θ0. For x > 0, we have log x ≤ x1/2. Furthermore, n ≥ 2. Thus

n2Dr = n2δ
(
200n5 log(n2δ)

)rk0n ≤ n2δ(200n6δ1/2)rk0n

≤ n2δ(200n6δ)n
3−1 ≤ (200n6δ)n

3

≤ (n2δ)7n3
.
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(For the last inequalities, use rk0n ≤ (n − 1)2n ≤ n3 − 1 and 200 ≤ 28 ≤ n8.) Thus

θ0 ≤ Dr

(
27n2 × 7n3 log(n2δ)

)k0n

= δ
(
200n5 log(n2δ)

)rk0n
(
189n5 log(n2δ)

)k0n

< Dr+1.

Since V0 ⊆ Wj ,

V0(θ−1
0 ) ⊆ Wj (θ−1

0 ) ⊆ Zj .

As deg Zj ≤ θ0 < Dr+1 ≤ θ , relation (4.19) implies that V0 ⊆ Zj . Thus, for
j = 1, . . . , s, we have V0 ⊆ Zj and

V0 ⊆
s⋂

j=1

Zj .

Let

Xr+1 = Xr ∩ Z1 ∩ · · · ∩ Zs.

Then V0 ⊆ Xr+1 ⊆ Xr .
Recall that deg Zj ≤ θ0 < Dr+1. Then

δ(Xr+1) ≤ max
{
δ(Xr ), Dr+1

} ≤ max
{
Dr, Dr+1

} = Dr+1.

We decompose

Xr+1 = W ′
1 ∪ · · · ∪ W ′

s ∪ W ′
s+1 ∪ · · · ∪ W ′

t ,

where W ′
j = Wj ∩ Z1 ∩ · · · ∩ Zs .

Let j ∈ {1, . . . , s}. Since Wj �⊆ Zj , every irreducible component of W ′
j has

codimension at least codim(Wj ) + 1 ≥ r + 1 + k1.
Let j ∈ {s + 1, . . . , t}. Since V0 �⊆ Wj , the variety V0 is not contained in any

irreducible component of W ′
j .

We conclude that Xr+1 satisfies our claim for r + 1. �

We already mentioned in Section 2 that Theorem 2.2 gives an improved and explicit
version of [AD1, théorème 1.4] (see Corollary 2.3) and of [AD2, théorème 1.5] (see
Corollary 2.4). Theorem 2.2 has other interesting applications. For instance, we have
the following.
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COROLLARY 4.1
Let V be an irreducible variety of codimension k which is not a translate of a subtorus.
Let

θ = δ(V )
(
200n5 log(n2δ(V ))

)2(k+1)n
.

Let B ⊆ V be a translate of a subtorus of dimension dim(V ) − 1. If δ0(B) > θ , then
B(θ−1) = ∅.

Proof
We apply Theorem 2.2 with V0 = B and V1 = V . We have k0 = k + 1 and k1 = k.
Thus (k0 − k1 + 1)k0n = 2(k + 1)n. The first conclusion of Theorem 2.2 cannot hold
because δ0(B) > θ . It follows that B(θ−1) is nondense in B. In view of Remark 2.5(i),
we deduce that B(θ−1) is empty. �

We further remark that Theorem 2.2 implies Theorem 2.1, up to a slightly worse
remainder term. More precisely, let V be a component of an intersection X of hy-
persurfaces of degree at most δ0(V ). Apply Theorem 2.2 with V0 = V and V1 = X.
Note that V ⊆ B ⊆ X cannot occur. This would imply that V = B because V is a
component of X, contradicting the assumption in Theorem 2.1 that V is not a translate
of a subtorus.

5. Quantitative description of the small points
In this section we prove our main theorem, Theorem 1.2. We then show some of its
consequences.

THEOREM 1.2
Let V � Gn

m be a variety of codimension k. We decompose V as a (reduced) union
Xk ∪ · · · ∪ Xn, where Xj is an equidimensional variety of codimension j . We define

θ = θ(V ) = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)
.

Then

V (θ−1) = Gk ∪ · · · ∪ Gn,

where Gj is either the empty set or a finite union of translates Bj,i of subtori of
codimension j such that δ0(Bj,i) ≤ θ . Moreover, for r = k, . . . , n,

r∑
i=k

θ r−i deg Gi ≤
r∑

i=k

θ r−i deg Xi ≤ θr . (5.20)
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Proof
We recall that, by our convention, the empty set is an equidimensional variety of any
codimension and degree zero. Using an inductive process, we are going to construct
Gk, . . . , Gn satisfying the condition of the theorem. Let r ∈ {k, . . . , n}. The following
claim is the inductive step of the proof.

CLAIM

There exist equidimensional varieties Gk, . . . , Gr−1, X
′
r of codimension k, . . . , r −

1, r such that
(i) for k ≤ j ≤ r−1, the variety Gj is a finite (possibly empty) union of translates

Bj,i of subtori such that δ0(Bj,i) ≤ θ ;
(ii) V (θ−1) ⊆ Gk ∪ · · · ∪ Gr−1 ∪ X′

r ∪ Xr+1 ∪ · · · ∪ Xn;
(iii)

∑r−1
i=k θ r−i deg Gi + deg X′

r ≤ ∑r

i=k θ r−i deg Xi .

In addition, Gr is a union of components of X′
r for r = k, . . . , n.

First, we clarify how this claim implies Theorem 1.2. Note that an equidimensional
variety of codimension n is a finite set of points, and points are translates of subtori.
In addition, δ0 of a point is 1 ≤ θ . Thus, we can define Gn = X′

n. Then assertion (ii)
of our claim for r = n implies that

V (θ−1) ⊆ Gk ∪ · · · ∪ Gn.

By Remark 2.5(ii), we can assume that

V (θ−1) = Gk ∪ · · · ∪ Gn.

Since Gr is a union of components of X′
r , assertion (ii) of our claim for r = k, . . . , n

gives the first inequality of (5.20). Philippon [P2, corollaire 5] (with m = n and
S = Pn) shows that, for θ ≥ δ(V ), we have

r∑
i=k

θ r−i deg Xi ≤ θr,

which gives the second inequality of (5.20).
It remains to prove our claim for r = k, . . . , n. We proceed by induction on r .

� For r = k, we simply take X′
k = Xk .

� Let r ∈ {k, . . . , n − 1}. We first note that if our claim holds for r , then it holds
also with the two supplementary conditions that

(a) no component of X′
r is imbedded in Gk ∪ · · · ∪ Gr−1;

(b) every component of X′
r meets V (θ−1).
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This is clear because we can discard the components of X′
r not satisfying (a) or (b)

without changing (ii) and (iii). Then, as an inductive hypothesis, we assume that we
have constructed Gk, . . . , Gr−1, X′

r satisfying our claim and the properties (a) and (b)
as well.

We decompose X′
r as

X′
r = Gr ∪ W1 ∪ · · · ∪ Ws, (5.21)

where
� Gr is the union of the components Br,i of X′

r which are translates of subtori
and such that δ0(Br,i) ≤ θ (possibly Gr = ∅);

� W1, . . . , Ws are the components of X′
r not in Gr (possibly s = 0).

Clearly, the first assertion of our claim for r + 1 is satisfied. It remains to show (ii)
and (iii) for r + 1.

Let i ∈ {1, . . . , s}.

Remark. There does not exist any translate B of a subtorus such that δ0(B) ≤ θ and
Wi ⊆ B ⊆ V .

Proof
Assume by contradiction that there exists a translate B of a subtorus such that δ0(B) ≤
θ and Wi ⊆ B ⊆ V . By condition (b), Wi(θ−1) �= ∅. Then Remark 2.5 (ii) gives
B(θ−1) = B. Furthermore, B(θ−1) ⊆ V (θ−1) and dim B ≥ r . Thus

Wi ⊆ B ⊆ Gk ∪ · · · ∪ Gr,

contradicting either (a) or the definition of Gr . �

We now apply Theorem 2.2 to the varieties V0 = Wi and V1 = V . We have k0 =
r ≤ n − 1 and k1 = k. The first conclusion of Theorem 2.2 cannot occur because of
the previous remark. Thus, the second conclusion must hold, namely, that there exists
a hypersurface Zi of degree at most θ such that Wi �⊆ Zi and Wi(θ−1) ⊆ Zi . By
Krull’s Hauptsatz, Wi ∩ Zi is either the empty set or it is an equidimensional variety
of codimension r + 1.

We define

X′
r+1 = Xr+1 ∪

s⋃
i=1

(Wi ∩ Zi).

By construction,

V (θ−1) ⊆ Gk ∪ · · · ∪ Gr ∪ X′
r+1 ∪ Xr+2 ∪ · · · ∪ Xn.

Then (ii) of our claim is satisfied for r + 1.
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By Bézout’s theorem, by the definition of X′
r+1, and by deg Zi ≤ θ , we deduce

that

deg X′
r+1 ≤ θ

( s∑
i=1

deg Wi

)
+ deg Xr+1.

Substituting
∑s

i=1 deg Wi = deg X′
r − deg Gr (which rises directly from (5.21)), we

obtain

deg X′
r+1 ≤ θ(deg X′

r − deg Gr ) + deg Xr+1.

Thus

r∑
i=k

θ r+1−i deg Gi + deg X′
r+1 ≤

r∑
i=k

θ r+1−i deg Gi

+ θ(deg X′
r − deg Gr ) + deg Xr+1

= θ
( r−1∑

i=k

θ r−i deg Gi + deg X′
r

)
+ deg Xr+1.

By the inductive hypothesis, Gk, . . . , Gr−1, X
′
r satisfy (iii) of our claim:

r−1∑
i=k

θ r−i deg Gi + deg X′
r ≤

r∑
i=k

θ r−i deg Xi .

Hence

θ
( r−1∑

i=k

θ r−i deg Gi + deg X′
r

)
+ deg Xr+1 ≤

r+1∑
i=k

θ r+1−i deg Xi.

This proves (iii) of our claim for r + 1. �

Proof of Corollary 1.3
Obviously, for all varieties V ⊆ W and real numbers ε ≥ 0, it holds that
V (ε) = V ∩ W (ε). Applying Theorem 1.2 to W , we immediately obtain
V (θ(W )−1) ⊆ V ∩ ⋃

Bj , where Bj ⊆ W are translates of subtori such that∑
deg Bj ≤ θ(W )n and δ0(Bj ) ≤ θ(W ). Consequently, if V (θ(W )−1) is dense in V ,

then V ⊆ ⋃
Bj and each component of V is contained in a translate Bj of a subtorus

with δ0(Bj ) ≤ θ(W ). �
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COROLLARY 5.1
Let V be an irreducible subvariety of Gn

m which is not a translate of a subtorus. Define

θ0 = δ0(V )
(
200n5 log(n2δ0(V ))

)n(n−1)2

.

Then V (θ−1
0 ) is contained in a finite union of translates Bj of proper subtori such that

V �⊆ Bj , δ0(Bj ) ≤ θ0, and
∑

j deg(Bj ) ≤ θn
0 .

Proof
Apply Corollary 1.3 with W an intersection of hypersurfaces of degree at most δ0(V )
such that V is a component of W . Then θ(W ) ≤ θ0, and the claim is proved except
for the assertion V �⊆ Bj . Note that, if V ⊆ Bj ⊆ W , then V = Bj because V is
a component in W . This contradicts the assumption that V is not the translate of a
subtorus. �

COROLLARY 5.2
Let V be an irreducible subvariety of Gn

m. Let

θω = ω(V )
(
200n5 log(n2ω(V ))

)n(n−1)2

.

Then V (θ−1
ω ) is contained in a finite union of translates Bj of proper subtori such that

δ0(Bj ) ≤ θω and
∑

j deg(Bj ) ≤ θn
ω .

Proof
Apply Corollary 1.3 with W a hypersurface such that V ⊆ W and deg(W ) = ω(V ).
Such a W exists by definition of ω. �

Note that Corollary 5.2 immediately implies that, for V transverse, μ̂ess(V ) ≥ θ−1
ω .

We further observe that the bound (5.20) of Theorem 1.2 can be slightly improved
for an irreducible V of codimension k which is not a translate of a subtorus. Indeed,
by Theorem 2.1, there exists a hypersurface Z with

deg Z ≤ θ0 = δ0(V )
(
27n2 log(n2δ0(V ))

)kn

which does not contain V and such that V (θ−1
0 ) ⊆ V ∩ Z. Then deg(V ∩ Z) ≤

θ0 deg(V ), codim(V ∩ Z) = k + 1, and δ(V ∩ Z) ≤ max(δ(V ), θ0). Thus θ(V ∩ Z)
is essentially bounded by θ(V ). Theorem 1.2 applied to the equidimensional variety
V ∩ Z gives a sharper version of the bound (5.20) obtained applying Theorem 1.2
directly to the variety V : substantially, the bound θ(V )r is replaced by θ0θ(V )r−1.
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In this spirit, one can play on Theorem 1.2 producing a series of essentially similar
corollaries.

Example 5.3
An example (inspired by [AD2, p. 555]) clarifies the situation. Let m ≥ 3 be an
integer. In G4

m, we consider the hypersurfaces

Zm = {xm + ym − 1 = 0}, W = {x2 + x3 − z − t = 0},

the variety Vm = Zm ∩ W , the subtori of W ,

T1 = {z = x2, t = x3}, T2 = {z = x3, t = x2},

and the curves Cm,i = Vm ∩ Ti = Zm ∩ Ti .
The varieties Vm, W , and Zm are transverse, while Cm,i is contained in Ti and

δ0(Ti) = 3. Moreover, ω(Vm) = deg(W ) = 3, δ(Vm) = deg(Zm) = m, ω(Cm,i) = 2,
δ(Cm,i) = deg(Zm) = m. Consider the points

P 1
m,n = (

21/n, (1 − 2m/n)1/m, 23/n, 22/n
) ∈ Cm,1

and

P 2
m,n = (

21/n, (1 − 2m/n)1/m, 22/n, 23/n
) ∈ Cm,2.

For n large, we have 0 ≤ c′/m ≤ h(P i
m,n) ≤ c/m for some absolute positive

constants c and c′ independent of m. Thus μ̂ess(Cm,i) ≤ c/m. This shows that the first
conclusion of Theorem 2.2 cannot be avoided. More precisely, let f be any positive
real function. Then we cannot expect μ̂ess(V0) ≥ f (δ(V1)) for V0 contained in a
translate of a subtorus ⊆ V1 of small δ0. This was contradicted by choosing V1 = W

and V0 = Cm,i for m large enough.
As noted in [AD2], we cannot “replace δ(V ) by ω(V )” in Theorem 1.2. More

precisely, let f be any positive real function. Then there exists a positive integer m′

such that c/m′ < f (3). Thus, for any sufficiently large n, the points P 1
m′,n and P 2

m′,n
lie on Vm′

(
f (ω(Vm′))

)
. Recall that V 0 is the complement in V of the union of all

translates of subtori of positive dimension contained in V . Since V does not contain
any translate of positive dimension, V 0

m′ = Vm′ . It follows that the set V 0
m′

(
f (ω(Vm′))

)
is not finite.

Let V be a subvariety of Gn
m. Notice that V (0) is the set of torsion points of V . By the

toric version of the Manin-Mumford conjecture (see [L]),

V (0) = B1 ∪ · · · ∪ Bt
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with Bj ⊆ V torsion varieties. We recall that V u is the union of all torsion varieties
contained in V . Since the torsion is dense in a torsion variety,

V u = V (0).

We say that a torsion variety B is maximal in V if B ⊆ V and B is not strictly
contained in any translate B ′ ⊆ V of a subtorus. If a translate B ′ contains a torsion
variety, then B ′ is itself a torsion variety. Thus, discarding torsion varieties contained
in others, we can assume that B1, . . . , Bt are precisely the maximal torsion varieties
of V and

V u = B1 ∪ · · · ∪ Bt .

The following corollary improves the known upper bounds on t quoted in the intro-
duction.

COROLLARY 5.4
Let V be a subvariety of ⊆ Gn

m of codimension k. Let

θ(V ) = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)

be as in (1.5). Let B1, . . . , Bt be the maximal torsion varieties of V . Then δ0(Bj ) ≤
θ(V ) and

t∑
j=1

θ(V )dim(Bj ) deg(Bj ) ≤ θ(V )n.

In particular, t ≤ θ(V )n.

Proof
The discussion above shows that

B1 ∪ · · · ∪ Bt = V (0) = V u.

Let θ = θ(V ). Since V (0) ⊆ V (θ−1), Theorem 1.2 gives

B1 ∪ · · · ∪ Bt = V (0) ⊆ V (θ−1) = B ′
1 ∪ · · · ∪ B ′

t ′,

where B ′
j ⊆ V are translates of subtori satisfying δ0(B ′

j ) ≤ θ and

t ′∑
j=1

θdim(B ′
j ) deg(B ′

j ) ≤ θn.

The Bj are maximal; thus {B1, . . . , Bt} ⊆ {B ′
1, . . . , B

′
t ′ }. �
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6. Applications to the Mordell-Lang plus Bogomolov problem
We first prove Corollary 1.4. Let us recall the statement.

COROLLARY 1.4
Let � be a subgroup of Gn

m of finite rank r , and let V � Gn
m be a subvariety of

codimension k. As in (1.5), let

θ(V ) = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)
.

Then for C ≥ 1 and for any nonnegative ε ≤ (2θ(V ))−1,

|V 0(C) ∩ �ε| ≤ (5nC)rθ(V )n+r .

Proof
For α ∈ Gn

m, let

hs(α) = h(α1) + · · · + h(αn)

be the height on Gn
m with respect to Gn

m ⊂ (P1)n. Let ρ ≥ 0 and μ > 0 such that
ρ/2μ ≥ ε. Since � has finite rank r , by [R, lemme 2.1], there exists a finite subset E

of � of cardinality at most (4μ + 3)r such that

{
x ∈ �ε : hs(x) ≤ ρ

} ⊆
⋃
y∈E

{
x ∈ �ε : hs(xy−1) ≤ ρ

μ

}
.

Since

h ≤ hs ≤ nh ,

this implies that
∣∣∣V 0(n−1ρ) ∩ �ε| ≤

∑
y∈E

∣∣∣(y−1V )0
(ρ

μ

)∣∣∣. (6.22)

Let θ = θ(V ). We choose ρ = nC and μ = nCθ . We have ρ/2μ = (2θ)−1 ≥ ε. By
Theorem 1.2, with V replaced by y−1V , we deduce that

∣∣∣(y−1V )0
(ρ

μ

)∣∣∣ ≤ θn.

In view of (6.22),

|V 0(C) ∩ �ε| ≤ |E|θn ≤ (4nCθ + 3)rθn.

We finally note that 4nCθ + 3 ≤ 5nCθ since 3 ≤ nθ ≤ nCθ . �
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Given a subset � ⊆ Gn
m and ε ≥ 0, we consider the conic neighborhood

C(�, ε) = {
α ∈ Gn

m : α = xz with x ∈ � and h(z) ≤ (1 + h(x))ε
}
.

Let ε = n−1 exp{−(4n)3n}, and let � ⊆ Gn
m be a subgroup of rank r . In [ESS,

Theorem 2.1], the authors show that the set of α ∈ Gn
m satisfying

α1 + · · · + αn = 1, α ∈ C(�, ε) (6.23)

is contained in the union of at most exp{(5n)3n(r +1)} proper linear subspaces of Q
n
.

Corollary 1.4 allows us to save an exponential in these estimates.

THEOREM 6.1
Let ε = (8n)−6n3

. Then the set of α ∈ Gn
m satisfying (6.23) is contained in the union

of at most (8n)6n3(n+r) proper linear subspaces of Q
n
.

Proof
We follow [ESS]. By the reduction process of [ESS, Section 6], it is sufficient to bound
the number of proper linear subspaces containing the solutions α of α1 +· · ·+αn = 1
such that

α ∈ C(�, ε) ∩ Gn
m(F ) .

We decompose

α = xz with x ∈ �, z ∈ Gn
m(F ), h(z) ≤ (

1 + h(x)
)
ε,

where F is a fixed number field. As in [ESS], we say that a solution is “large” (see
[ESS, (9.1)]) if h(x) > 4n log n. The argument of [ESS, Sections 8, 9, 10] shows∗

that the number of large solutions is contained in at most

A = 22(2n+9)2
(8n2 + 2n)n+4+r

proper linear subspaces of F n. We have

A ≤ 1

4
(8n)6n3(n+r).

∗Indeed, in these sections, the value of ε is used only to guarantee [ESS, (9.19)]. This equation still holds for our
choice of ε since h(z) ≤ ε(1 + h(x)) = (8n)−6n3

(1 + h(x)) ≤ h(x)/(8n) if h(x) ≥ 1.
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Indeed, using 8n2 + 2n ≤ 24n2, we obtain A/(1/4)(8n)6n3(n+r) ≤ 2anb with

a = 2(2n + 9)2 + 4(4 + n + r) + 2 − 18n3(n + r),

b = 2(4 + n + r) − 6n3(n + r).

Since b < 0 and a + b < 0, we have 2anb ≤ 2a+b < 1.
We now consider “small” solutions α = xz satisfying h(x) ≤ 4n log n. Let V be

the subvariety of Gn
m defined by α1 + · · · + αn = 1. Then δ(V ) = 1 and

θ(V ) = (400n5 log n)n(n−1)2
.

We have 400n5 log n ≤ 400n11/2 ≤ (1/4)(8n)11/2 and

θ(V ) ≤ 1

4
(8n)(11/2)n3

.

By [S, p. 161], V 0 is the set of nondegenerate solutions of this equation. Moreover,
small solutions satisfy

h(α) ≤ h(x) + h(z) ≤ 4n log n + (1 + 4n log n)ε

≤ (4 + 5ε)n log n

≤ 5n2

and

h(z) ≤ (1 + 4n log n)ε.

Note that

(1 + 4n log n)ε · 2θ(V ) ≤ 5n2(8n)−6n3
(8n)(11/2)n3

< 1.

Thus we can apply Corollary 1.4 with C = 5n2. Using the inequality 5nC ≤ (8n)3,
we find that there are at most

B = (5nC)rθ(V )n+r ≤ 1

4
(8n)3r+(11/2)n3(n+r) ≤ 1

4
(8n)6n3(n+r)

nondegenerate small solutions. Since the degenerate solutions are contained in the
union of at most 2n proper linear subspaces, to cover the set of all solutions we need
at most

A + B + 2n ≤ 1

4
(8n)6n3(n+r) + 1

4
(8n)6n3(n+r) + 2n ≤ (8n)6n3(n+r)

subspaces. �
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Using this last theorem, we deduce the following.

THEOREM 6.2
Let K be an algebraically closed field of characteristic zero. Let (a1, . . . , an) ∈
Gn

m(K), and let � be a subgroup of Gn
m(K) of finite rank r . Then the equation

a1α1 + a2α2 + · · · + anαn = 1 with α ∈ � (6.24)

has at most A(n, r) = (8n)4n4(n+r+1) nondegenerate solutions.

Proof
By [ESS, Lemma 3.2], we may suppose that K = Q. Let A′(n, r) be the number of
nondegenerate solutions of (6.24). We prove by induction on n that A′(n, r) ≤ A(n, r)
for every positive integer r . Our claim is obvious if n = 1. Let n be an integer at least
2, and assume that A′(m, r) ≤ A(m, r) for 1 ≤ m < n and for every positive integer
r . Let B(n, r) = (8n)6n3(n+r) be the bound of Theorem 6.1. Then, by the arguments
of [ESS, Section 4] and by the inductive hypothesis,∗

A′(n, r) ≤ 2nA(n − 1, r)B(n, r + 1) ≤ (8n)c

with

c = n + 4(n − 1)4(n + r) + 6n3(n + r + 1)

≤ (
1 + 4(n − 1)4 + 6n3

)
(n + r + 1)

≤ 4n4(n + r + 1).

Thus A′(n, r) ≤ (8n)4n4(n+r+1), as required. �

As mentioned, Theorem 6.2 has an application to estimate for the multiplicities in a
linear recurrence sequence {um}m∈Z of order n ≥ 1 with elements in K , for K an
algebraically closed field of characteristic zero. Let {um} be such a sequence. Then it
satisfies a minimal relation

um+n = c1um+n−1 + · · · + cnum (m ∈ Z)

with c1, . . . , cn ∈ K . We say that {um} is simple if its companion polynomial G(z) =
zn − c1z

n−1 − · · · − cn has only simple roots. Let

S(um) = {k : uk = 0}.
∗Note that, for integers a, b ≥ 1 and r1, r2 ≥ 0, the function A(n, r) satisfies the inequality A(a, r1)A(b, r2) ≤
A(a + b − 1, r1 + r2). Thus [ESS, inequality (4.12)] still holds.



440 AMOROSO and VIADA

The Skolem-Mahler-Lech theorem asserts that, for an arbitrary linear recurrence se-
quence {um} of order n ≥ 1, the set S(um) is a finite union of arithmetic progres-
sions (where single elements of Z are trivial arithmetic progressions). The following
corollary improves by one exponential the bounds of [ESS, Theorem 1.2] on the
Skolem-Mahler-Lech theorem.

COROLLARY 6.3
Let {um} be a simple linear recurrence sequence in K of order n ≥ 1. Then S(um) is
the union of at most (8n)4n5

arithmetic progressions.

Proof
We follow closely the inductive proof of [ESS, Theorem 1.2] in [ESS, Section 5]. We
define W (n) = (8n)4n5

. Using our Theorem 6.2 instead of [ESS, Theorem 1.2], we
see that [ESS, (5.3)] has at most

A(n − 1, 1) = (
8(n − 1)

)4(n−1)4(n+1) ≤ 1

2
(8n)4n5

nondegenerate solutions. For 2 ≤ l ≤ n − 2, we have

W (l)W (n − l) ≤ (8n)4n5−n

because l5 + (n − l)5 ≤ (l + (n − l)) max(l, n − l)4 ≤ n(n − 2)4 ≤ n5 − n. Thus

A(n − 1, 1) + 2n max
2≤l≤n−2

W (l)W (n − l) ≤ 1

2
(8n)4n5 + 1

2
(8n)4n5 = W (n).

As in [ESS], we conclude that our result holds. �
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Soc. Math. France 114 (1986), 353 – 383. MR 0878242

[P2] ———, Sur des hauteurs alternatives, III, J. Math. Pures Appl. (9) 74 (1995),
345 – 365. MR 1341770

[Po] B. POONEN, Mordell-Lang plus Bogomolov, Invent. Math. 137 (1999), 413 – 425.
MR 1705838
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