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1 From torsion to small points

The former Manin-Mumford conjecture predicts that the set of torsion points
of a curve of genus ≥ 2 embedded in its jacobian is finite. More generally,
let G be a semi-abelian variety and V an algebraic subvariety of G, defined
over some algebraically closed field K. We say that V is a torsion variety if
it is a translate of a proper connected algebraic subgroup by a torsion point
of G. We also denote by Vtors the set of torsion points of G lying on V . We
have the following generalization of the Manin-Mumford conjecture.

Theorem 1.1.

i) If V is not a finite union of torsion varieties, then Vtors is not Zariski
dense.

ii) The Zariski closure of Vtors is a finite union of torsion varieties.

The two assertions are clearly equivalent. Theorem 1.1 was proved by
Raynaud ([24]) when G is an abelian variety, by Laurent ([20]) if G = Gn

m,
and finally by Hindry ([18]) in the general situation.

We assume from now on that all varieties are algebraic and defined over
Q. Bogomolov ([10]) gave the following generalization of the former Manin-
Mumford conjecture. Let C be a curve of genus≥ 2 embedded in its jacobian.
Then C(Q) is discrete for the metric induced by a Néron-Tate height. In
other words, Bogomolov conjectures that the set of points of sufficiently
small height on C is finite, while the former Manin-Mumford conjecture
makes a similar assertion on the set of torsion points (which are precisely
the points of zero height).

More generally, let G be a semi-abelian variety and let ĥ be a normalized
height on G(Q). For instance, if G is an abelian variety we can choose for ĥ
a Neron-Tate height, and if G = Gn

m ↪→ Pn we can choose the restriction of
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the Weil height on Pn. In particular ĥ is a non-negative function on G and
ĥ(P ) = 0 if and only if P is a torsion point.

Let V be a subvariety of Gn
m. We define the essential minimum µ̂ess(V )

as the infimum of the set of θ > 0 such that

V (θ) = {P ∈ V | ĥ(P ) ≤ θ}

is Zariski dense in V . We also define V u as the union of the torsion subvari-
eties contained in V . By the former Manin-Mumford conjecture, V u is the
Zariski closure of Vtors and thus it is the union of the finite set of maximal
torsion subavarieties of V (see exercise 1.2). In particular V ∗ = V \V u is a
Zariski open set. We set µ∗(V ) := infα∈V ∗ ĥ(α).

Theorem 1.2. Let V be a subvariety of G. Then:

i) If V is not a union of torsion varieties, then µ̂ess(V ) > 0.

ii) V ∗ is discrete for the metric induced by ĥ, i.e. µ∗(V ) > 0.

It is easy to see that the two assertions are equivalent. Theorem 1.2 was
proved for G = Gn

m by Zhang (see [28]). Bilu (see [9]) gave an independent
elementary proof, relying on his equidistribution theorem for Galois conju-
gates of algebraic numbers with small height. In the abelian case, Ullmo
(see [26]) proved Bogomolov’s original formulation for curves (dim(V ) = 1);
immediately after Zhang (see [29]) proved theorem 1.2.

The semi-abelian case was solved by David and Philippon (see [16]).

In these lessons we state some quantitative versions of theorem 1.2 for a
torus G = Gn

m and we sketch proofs of some of these results.

Exercice 1.1. Prove that assertions i) and ii) of theorem 1.1 are equivalent.
Do the same for theorem 1.2.

Exercice 1.2. We say that a torsion subvariety B ⊆ V is maximal (in V ),
if B is not strictly contained in any torsion variety contained in V . Deduce
from theorem 1.1 that the set of maximal torsion subvarieties of V is finite,
and that its union is the Zariski closure of Vtors.
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2 Conjectures and results

Let α ∈ Q and let K be a number field containing α. We denote by MK

the set of places of K. For v ∈ K, let Kv be the completion of K at v and
let | · |v be the (normalized) absolute value of the place v. Hence

|α|v = |σα|,

if v is an archimedean place associated to the embedding σ : K ↪→ Q. If v is
a non archimedean place associated with the prime ideal ℘ over the rational
prime p, we have

|α|v = p−λ/e,

where e is the ramification index of ℘ and λ is the exponent of ℘ in the
factorization of the ideal (α) in the ring of integers of K. This standard
normalization agrees with the product formula∏

v∈MK

|α|[Kv :Qv ]
v = 1

which holds for any α ∈ K∗. For further references we recall that for any
rational place w (thus w =∞ or w = a prime number)∑

v|w

[Kv : Qv] = [K : Q].

Let α = (α0 : · · · : αn) ∈ Pn(K) and let K be any number field contain-
ing α0, . . . , αn. We define the Weil height of α by:

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α0|v, . . . , |αn|v}.

This definition does not depend on the number field K; moreover it does not
depend on the projective coordinates of α (use the product formula). This
provides a height function ĥ(x1, . . . , xn) = h(1 : x1 : · · · : xn) on Gn

m(Q).
The following properties hold:

i) the function ĥ is a positive function on Gn
m(Q), vanishing only on its

torsion points;

ii) ĥ(αβ) ≤ ĥ(α) + ĥ(β). Moreover, if ζ is a torsion point, ĥ(ζα) = ĥ(α);

iii) if n ∈ N then ĥ(αn) = nĥ(α);

3



iv) a subset of Gn
m(Q) of bounded height and bounded degree is finite.

For a proof of the statements above and for more on Weil’s height, see for
instance [19].

We fix the embedding ι : Gn
m ↪→ Pn, ι(x1, . . . , xn) = (1 : x1 : · · · : xn).

By subvariety of Gn
m we mean an algebraic subvariety V defined over some

number field K. The degree of V is the degree of its Zariski closure in
Pn. We shall say that V is irreducible if its Zariski closure is geometrically
irreducible. Similarly, we say that V is K-irreducible if its Zariski closure is
irreducible over K.

We denote by [l] : Gn
m → Gn

m the multiplication by [l], i.e. the morhism
x 7→ xl = (xl1, . . . , x

l
n). Thus the kernel Ker([l]) is the set of l-torsion points.

It is a subgroup ∼= (Z/lZ)n.
By algebraic subgroup of Gn

m we mean a closed algebraic subvariety
stable under the group operations. An irreducible algebraic subgroup is
called a torus. Any algebraic subgroup is a finite disjoint union of translates
of a torus by torsion points. Given an algebraic subgroup H we denote by
H0 its connected component containing (1, . . . , 1). For more on algebraic
subgroups of Gn

m see [11] or [27]
Let us recall that the essential minimum µ̂ess(V ) of a subvariety V ⊆ Gn

m

is µ̂ess(V ) = inf{θ > 0 | V (θ) = V } where V (θ) = {P ∈ V | ĥ(P ) ≤ θ}.
Theorem 1.2 asserts that µ̂ess(V ) = 0 if and only if V is a union of torsion
varieties. The problem of finding sharp lower bounds for µ̂ess(V ) for a sub-
variety of Gn

m which is not a union of torsion varieties is a generalization
of Lehmer’s problem ([21]). A lower bound for the essential minimum will
depend on some geometric invariants of V , for instance its degree. More-
over, if we do not make any further geometric assumption on the variety,
such a bound must also depend on its field of definition. Indeed, let H be
a proper subtorus of Gn

m and let αn be a sequence of non-torsion points
whose height tends to zero (for instance, αn = (21/n, . . . , 21/n)). Then,
the varieties Vn = Hαn have fixed degree deg(H) and essential minimum
µ̂ess(Vn) ≤ ĥ(αn) → 0. In spite of that, if we further assume that V is not
a translate of a proper subtorus (even by a point of infinite order), then
Bombieri and Zannier ([12]) proved that the essential minimum of V can be
bounded from below only in terms of the degree of V .

Let V be a subvariety of Gn
m. We define the obstruction index ω(V ) of

V as the minimum of deg(Z) where Z is a hypersurface containing V . As a
trivial example, let α be an algebraic number of degree d and let V ⊂ Gm

4



be the set of its conjugates. Then ω(V ) = d. More generally, let V be an
equidimensional subvariety of Gm

n of degree d. Then, by a result of Chardin
(see [13]))

ω(V ) ≤ nd1/codim(V ) . (2.1)

It turns out that ω(V ), and not the degree of V , is the right invariant
to formulate the sharpest conjectures on µ̂ess(V ). Although, in order to
get lower bounds for µ̂ess(V ) depending only on ω(V ), we need some extra
assumptions.

If we look for a lower bound of the essential minimum of a Q-irreducible
subvariety V (arithmetic case) depending only on ω(V ), the assumption that
V is not a union of torsion varieties is not sufficient. We need to assume
moreover that V is weak-transverse, i.e. that V is not contained in a union
of torsion varieties. To see that this further assumption is necessary, let us
consider the family of subvarieties Vl = {(x, 1) ∈ G2

m, x
l = 2} (l ∈ N) which

are Q-irreducibles, not torsion, and satisfy ω(Vl) = 1 and µ̂ess(Vl) = (log 2)/l.
Similarly, if we look for a lower bound of µ̂ess(V ) depending only on

ω(V ), where now V is an irreducible subvariety which may be not defined
over Q (geometric case), the assumption that V is not a a translate of a
subtorus is not sufficient. We need to assume that V is transverse, i.e. that
V is not contained in a proper translate of a subtorus. As an example,
consider a curve C ⊆ G2

m which is not a translate of a subtorus. Let C′ =
C × {1} ⊆ G3

m and choose, for l ∈ N, an irreducible component Vl of [l]−1C′.
Then µ̂ess(Vl) 7→ 0, while ω(Vl) = 1.

In [2] (arithmetic case) and [4] (geometric case) we made a conjectural
lower bound for µ̂ess(V ) which will state now in a simplified version.

Conjecture 2.1. Let V ⊆ Gn
m be a either a Q-irreducible weak-transverse

subvariety (arithmetic case) or an irreducible transverse subvariety (geomet-
ric case). Then there exists c(n) ≥ 1 such that

µ̂ess(V ) ≥ (c(n)ω(V ))−1.

This conjecture is proved “up to a remainder term” in both arithmetic
case ([2] if dimV = 0 and [3] if dimV > 0) and geometric case ([4]). This is
a simplified version of these results:

Theorem 2.2. Let V ⊆ Gn
m be as in Conjecture 2.1. Then for any ε > 0

there exists c(n, ε) ≥ 1 such that

µ̂ess(V ) ≥ (c(n, ε)ω(V ))−1−ε.
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Remark that if n = 1 the arithmetic case of the conjecture reduces to
Lehmer’s conjecture, while the arithmetic case of the theorem is Dobrowol-
ski’s theorem (in a simplified version) [17]. Indeed the set of conjugates of an
algebraic number α is weak-tranverse if and only if α is not a root of unity.
For n = 1 the conjecture and the theorem are empty in the geometric case,
since points are translate. For n > 1 the conjecture and the theorem are, in
the arithmetic case, the natural generalization of Lehmer’s conjecture and
Dobrowolski’s theorem. In this situation, theorem 2.2 sometimes produces
lower bounds for the height of algebraic numbers which are even stronger
than what is expected by Lehmer’s conjecture. Let α1, . . . , αn algebraic
numbers of height ≤ h, lying in a number field of degree d. We remark that
the 0-dimensional variety V = {σ(α)}σ∈Gal(Q/Q) ⊂ Gn

m is weak-transverse if
and only if α1, . . . , αn are multiplicatively independent. Let us assume that
this is the case. We have µ̂ess(V ) ≤ h and, by (2.1),

ω(V ) ≤ nd1/n.

Thus, by the arithmetic part of theorem 2.2, for any ε > 0 we have

h ≥ c(n, ε)d−1/n−ε.

for some effective c(n, ε) > 0.

In [7] and [8] we gave a new and simpler proof of an improved a more
explicit version of theorem 2.2. We will describe in details this new proof
(in the geometric case) in the next sections. In the rest of this section we
state some more conjectures and results concerning the localization of small
points.

Let V be a subvariety of Gn
m. As mentioned in the introduction, an

equivalent version of theorem 1.2 says that the height on V ∗(Q) is bounded
from below by a positive quantity:

µ∗(V ) = inf
α∈V ∗

ĥ(α) > 0.

Remark that obviously µ∗(V ) ≤ µ̂ess(V ). Hence one could hope, in analogy
to the conjectural lower (2.1), that, at least for a weak-transverse V defined
over Q,

µ∗(V ) ≥ (c(n)ω(V ))−1

for some constant c(n) ≥ 1. This is false, as the following example shows.
Let αk be a sequence of algebraic numbers of minimal poynomial fk(t) ∈ Q[t]
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whose height is positive and tends to zero as k → +∞ (thus deg(fk)→∞).
Let us consider

Vk = {(x1, x2, x3) ∈ G3
m | f(x1) = x21 + x31 − x2 − x3 = 0}. (2.2)

One checks (exercise 2.2) that Vk is weak-transverse, αk = (αk, α
2
k, α

3
k) ∈ V ∗k ,

h(αk)→ 0 and ω(Vk) ≤ 3.
Thus, we modify our guess as follow. Let δ(V ) be the minimum integer

δ such that V is the intersection of hypersurfaces Z1, . . . , Zr of degree ≤ δ.
Assuming V defined over Q, in [5] we conjecture a lower bound of the shape:

µ∗(V ) ≥ (c(n)δ(V ))−1 ,

where as usual c(n) ≥ 1. In the same article, we prove this conjecture up to
a remainder term, as we state here in a simplified form:

Theorem 2.3. Let V ⊆ Gn
m be a Q-irreducible variety. Then for any ε > 0

there exists c(n, ε) ≥ 1 such that

µ∗(V ) ≥ (c(n)δ(V ))−1−ε .

We make a similar analysis for varieties not necessarily defined over Q.
Let V be a tranverse subvariety of Gn

m and define, as in [12],

V 0 = V \
⋃
B⊆V

B.

where the union is now on the set of translates B of tori of positive dimen-
sion. Again V \V 0 is an open set (see [12] and [25]); Bombieri and Zannier
prove that, outside a finite set, the height on V 0 is bounded from below by
a positive quantity depending only on the ideal of definition of V and not
on its field of definition. More precise result was obtained by Schmidt [25]
and by David and Philippon (see [15])

Again we cannot expect bounds depending only on ω(V ). In [6], the
following is conjectured.

Conjecture 2.4. Let V ⊆ Gn
m be an irreducible variety. There exists c(n) ≥

1 such that, for α ∈ V 0 outside a finite subset of cardinality ≤ c(n)δ(V )n,
we have

h(α) ≥ (c(n)δ(V ))−1.
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Let ε > 0. Using a variant of the main result of [4] and an additional
induction, in [6] theorem 1.5, we prove that, for all but finitely many α ∈ V 0,

ĥ(α) ≥ (c(n, ε)δ(V ))−1−ε,

where c(n, ε) ≥ 1. We remark that the proof of [6] can not produce a
bound of the conjectured shape for the cardinality of the set of points of
pathologically small height. This last gap was filled in [8] where we prove
the above conjecture up to a remainder term, as we state now in a simplified
version.

Theorem 2.5. Let V ⊆ Gn
m be an irreducible variety. Then for any ε > 0

there exists c(n, ε) ≥ 1 such that, for α ∈ V 0 outside a finite subset of
cardinality ≤ (c(n, ε)δ(V ))n+ε, we have

h(α) ≥ (c(n, ε)δ(V ))−1−ε.

Exercice 2.1. Prove properties i)-iv) of Weil’s height.

Exercice 2.2. Let Vk as in (2.2). Show that Vk is weak-transverse, αk =
(αk, α

2
k, α

3
k) ∈ V ∗k , h(αk)→ 0 and ω(Vk) ≤ 3.

Exercice 2.3. Let B be a translate of a subtorus and let ε ≥ 0. Prove that
B(ε) is either empty or dense in B.

Exercice 2.4. Let V ( Gn
m be an irreducible variety and let ε > 0. Assume

that V (ε) is contained in a finite union of translates of subtori contained in
V . Prove that V (ε) is the union of some of these translates.

Exercice 2.5. Let V be a Q-irreducible subvariety of Gn
m. Prove that there

exists a hypersurface Z defined over Q, containing V and of degree ω(V ).

3 Overview of the methods

The original proofs of the lower bound for the essential minimum in the
arithmetic and geometric case require several technical tools. By contradic-
tion, we assume in both proofs that the essential minimum is sufficiently
small. We then start following the usual steps of a transcendence proof:
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interpolation (construction of an auxiliary function), extrapolation and zero
estimates. Concerning the zero lemma, in both cases these proofs become
very technical.

Let us consider first the arithmetic case. In diophantine analysis a clas-
sical zero lemma (as the main result of [22]) is normally enough to conclude
the proof. On the contrary, in [2] we need a more complicated zero lemma.
As a consequence, this force to extrapolate over different set of primes. In
Dobrowolski’s proof ([17]) one construct, using Siegel’s Lemma, an auxil-
iary function F which vanishes on α. Then we extrapolate by proving that
F must also vanish on αp at least for small primes p. In the proof of the
arithmetic case of theorem 2.2 we construct an auxiliary function vanishing
on V and then we extrapolate by proving that F must also vanish on [l]V
for any product l = p1 · · · pk of small primes (k = codim(V )). The zero
lemma we alluded before shows that for some l the obstruction index ω′

of {σ(αl)}σ∈Gal(Q/Q) is pathologically small than the obstruction index ω

of {σ(α)}σ∈Gal(Q/Q). Unfortunately, it seems hard to find a lower bound

for ω′ in terms of ω. Thus, we cannot conclude easily the proof. To avoid
this problem, we start again the whole construction replacing V with [l]V .
To ensure that the process end at some moment, we need a cumbersome
induction (descent step).

The situation is quite similar in the original proof of the lower bound
for the essential minimum in the geometric case. In this proof we construct
again an auxiliary function vanishing on V and then we extrapolate by
proving that F must also vanish on ker[l]V for l as before. We need again a
variant of a zero lemma which use the fact that our set of translation (the
union of ker[l]) is actually an union of big subgroups. Using this new zero
lemma we succeed to show that for some l the obstruction index ω([l]V ) is
pathologically small than ω(V ). As in the arithmetic situation, we conclude
the proof with a descent step.

In [7] we simplify the proof of the geometric result, giving a totally
explicit statement:

Theorem 3.1. Let V ⊂ Gn
m be an irreducible transverse variety of codimen-

sion k. Then

µ̂ess(V ) ≥ ω(V )−1
(
200n5 log(n2ω(V ))

)−nk2
.

The proof consists of several steps. First we code the diophantine anal-
ysis in an inequality involving some parameters, the essential minimum of
a subvariety of Gn

m and two Hilbert’s functions. The key idea to decode the
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diophantine information is to use sharp estimates for the Hilbert function.
The upper bound is a variant of the main result of [13]. It is proved in [4],
lemma 2.5. The lower bound is a deep result of Chardin and Philippon [14],
corollary 3. Using these tools, in1 [7] we prove:

Theorem 3.2. Let V be an irreducible subvariety of Gn
m of codimension k

which is not a translate of a torus. Let

θ0 = δ0(V )
(
27n2 log(n2δ0(V ))

)kn
.

Then V (θ−10 ) is contained in a hypersurface Z of degree at most θ0 which
does not contain V . In particular, µ̂ess(V ) ≥ θ−10 .

In this theorem δ0(V ) is the minimal degree δ0 such that V is an irre-
ducibile component of an intersection of hypersurfaces of degree ≤ δ0. We
recall that δ(V ) has been defined as the minimal degree δ such that V is, as
a set, intersection of hypersurfaces of degree ≤ δ. If V is irreducible, then

ω(V ) ≤ δ0(V ) ≤ δ(V ) ≤ deg(V ) ≤ δ0(V )codim(V ). (3.1)

The first three inequalities are immediate. The last one follows from [22]
proposition 3.3 with p = 1, N1 = n and D1 = δ0(V ).

A priori, it is difficult to compare theorem 3.2 with theorem 3.1. On
the one hand, in theorem 3.2 we do not assume that V is transverse, but
only that V is not a translate of a torus. On the other hand, the bound
in theorem 3.2 depends on δ0(V ) which could potentially be equal to the
degree of V , while

ω(V ) ≤ n deg(V )1/codim(V ).

Nevertheless, a new reduction process (originated by an idea of Viada)
applied to each variety involved, allows us to deduce theorem 3.1 from the-
orem 3.2.

In the next four sections, which are largely inspired by [7], we shall de-
scribe in detail the main steps of this method. In section 4 we code the
diophantine information. In section 5 we prove theorem 3.2. In section 6
we deduce theorem 3.1. In the last section we come back to the localiza-
tion of small points, proving a general result (theorem 7.3) which implies
theorem 2.5.

1A preliminary version of this theorem already appears [1].
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4 Diophantine analysis: encoding the information

The original proof of the lower bound for the essential minimum in the
geometric case relies on the fact that V is p-adically close to ζV for all
p-torsion points ζ and for all small primes p. This is a consequence of the
following simple remark. For any p-root of unity ζ and for any place v | p we
have |1−ζ|v ≤ p−1/(p−1). But also all the translates of V by p-torsion points
are p-adically close to each other. This gives a first simplification: we replace
the vanishing principle used in [4] by a symmetric vanishing principle. For
technical reasons, it is more convenient to use an interpolation determinant
than an auxiliary function. In this new diophantine approach, the Hilbert
function appears in a natural way. Let us recall some basic facts on it.

Let I ⊂ Q[x] be a homogeneous reduced ideal. For ν ∈ N we denote
by H(I; ν) the Hilbert function dim[Q[x]/I]ν . Let T be a positive integer
and I ⊂ Q[x] be a homogeneous reduced ideal. We denote by I(T ) the T -
symbolic power of I, i.e. the ideal of polynomials vanishing on the variety
defined by I with multiplicity at least T . Let V be a variety of Gn

m, defined
in Pn by a reduced ideal I. By abuse of notations, we set H(V ; ν) = H(I; ν)
and H(V, T ; ν) = H(I(T ); ν).

We can now proceed on the first part of the proof: we encode the dio-
phantine information in a general lower bound involving some parameters
and two related Hilbert’s function.

Theorem 4.1. Let ν, T be positive integers and let p be a prime number.
Let V be a subvariety of Gn

m. Then

µ̂ess(V ) ≥
(

1− H(V, T ; ν)

H(ker[p]V ; ν)

)
T log p

pν
− n

2ν
log(ν + 1).

Proof. Choose any real ε such that ε > µ̂ess(V ). For simplicity we define
S = V (ε). Then S is Zariski dense in V . We consider the (potentially
infinite) matrix (βλ) where the lines are indexed by2 β ∈ ker[p]S and the
columns by the vectors λ ∈ Nn+1 with |λ| = λ0 + · · · + λn = ν. Since S
is Zariski dense in V , this matrix has rank L = H(ker[p]V ; ν). We select
β1, . . . ,βL ∈ ker[p]S and λ1, . . . ,λL with |λj | = ν such that

det(β
λj

i )i,j=1,...,L 6= 0 .

2we identify β ∈ Gn
m with (1,β) ∈ Pn
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Thus the multi-homogeneous polynomial

F (x1, . . . ,xL) = det(x
λj

i )i,j=1,...,L ∈ Z[x1, . . . ,xL]

does not vanish at (β1, . . . ,βL). Choose α1, . . . ,αL ∈ S such that βj ∈
ker[p]αj . We have

Lemma. The polynomial F vanishes on (α1, . . . ,αL) with multiplicity at
least T0 =

(
L−H(V, T ; ν)

)
T .

Proof. Let W = {α1, . . . ,αL}. Obviously we may assume H(V, T ; ν) <
L. Let L0 = L − H(W,T ; ν) and remark that L0 ≥ L − H(V, T ; ν) > 0.
Let E1, E2 ⊆ Q[x0, . . . , xn]ν be respectively the vector space generated by
xλ1 , . . . ,xλL and the vector space of homogeneous polynomials of degree ν
vanishing on W with multiplicity at least T . Since F 6= 0, we have λi 6= λj
for i 6= j; thus dim(E1) = L. By definition of E2 we have dim(E2) =(
n+ν
n

)
−H(W,T ; ν). Then

dim(E1 ∩ E2) = dim(E1) + dim(E2)− dim(E1 + E2)

= L+

(
n+ ν

n

)
−H(W,T ; ν)− dim(E1 + E2) ≥ L0 .

Thus, there exist L0 linearly independent polynomials

G1 =

L∑
j=1

g1jx
λj , . . . , GL0 =

L∑
j=1

gL0jx
λj

vanishing on W with multiplicity ≥ T . Without loss of generality we can
assume

det(gk,j) 1≤k≤L0
L−L0<j≤L

6= 0 .

Thus we may replace the last L0 columns of the matrix (x
λj

i ) by

τ
(
Gk(x1), . . . , Gk(xL)

)
, k = 1, . . . , L0

changing its determinant only by a nonzero constant. Since the polynomials
Gk vanish on W with multiplicity ≥ T , developing the determinant with
respect to the new last L0 columns we see that it vanishes on (α1, . . . ,αL)
with multiplicity ≥ L0T ≥ T0 as required.

�
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Let v be a place dividing p. Using the inequality |1 − ζp|v ≤ p−1/(p−1)

we get
|αj,k − βj,k|v ≤ p−1/(p−1)|αj,k|v

for j = 1, . . . , L and k = 1, . . . , n. We perform the Taylor expansion of F
around (α1, . . . ,αL). Since F vanishes on (α1, . . . ,αL) with multiplicity at
least T0 we obtain

|F (β1, . . . ,βL)|v ≤ p−T0/(p−1)
L∏
j=1

|αj |νv .

where |αk|v = max{1, |αj,1|v, . . . , |αj,n|v}.
By the ultrametric inequality for v -∞ and by the Hadamard inequality

for v | ∞ we obtain that, for an arbitrary place v,

|F (β1, . . . ,βL)|v ≤


∏L
j=1 |βj |νv , if v -∞

LL/2
∏L
j=1 |βj |νv , if v | ∞ .

Since αk is a translate of βk by a torsion point, |βk|v = |αk|v. We apply
the product formula to F (β1, . . . ,βL) 6= 0. Let K be a sufficiently large
number field.

0 ≤
∑

v∈MK

[Kv : Qv]

[K : Q]
log |F (β1, . . . ,βL)|v

≤ −T0 log p

p− 1
+
L

2
logL+ ν

L∑
j=1

h(αj) ≤ −
T0 log p

p
+
L

2
logL+ νLε .

Moreover L ≤ (ν + 1)n. Thus

ε ≥ T0 log p

Lpν
− n

2ν
log(ν + 1) .

Taking the limit for ε which tends to µ̂ess(V ) we obtain the wished bound.

�
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5 Proof of theorem 3.2: decoding the information

A technical part of the proof of theorem 3.2 is devoted to the computation
of the constant involved. In order to simplify things and to improve the
comprehension, we restrict ourself to sketch a proof of a non explicit version
of theorem 3.2.

Theorem 5.1. Let V be an irreducible subvariety of Gn
m of codimension k

which is not a translate of a torus. Then, there exists θ0 > 0 with

θ0 ≤ c(n)δ0(V )
(

log(n2δ0(V ))
)kn

.

for some c(n) ≥ 1 and such that V (θ0) is contained in a hypersurface Z
of degree at most θ0 which does not contain V (in particular, this implies
µ̂ess(V ) ≥ θ−10 ).

Proof. Let d = n − k = dim(V ) and δ0 = δ0(V ). From now on, we use
in a non standard way the symbols ≈, � and �. We write A ≈ B if and
only if c1B < A < c2B with c1, c2 > 0. The constants c1,c2 are eventually
assumed to be sufficiently large (or small) in such a way that the forthcom-
ing assumptions are verified. Similarly, A � B (or B � A) if and only if
A ≤ cB where c > 0 has the same meaning as before.

Let θ0 > 0 which will be fixed later. Let W be the Zariski closure of the
set V (θ−10 ) and let W ′ = ker[p]W . Then, µ̂ess(W ) ≤ θ−10 . By theorem 4.1
(with V replaced by W and ν replaced by θ0),

θ−10 ≥ µ̂ess(W ) ≥
(

1− H(W,T ; θ0)

H(W ′; θ0)

)
T log p

pθ0
− n

2θ0
log(θ0 + 1)

As W ⊆ V we have H(W,T ; θ0) ≤ H(V, T ; θ0). We want to show that
H(W ′; θ0) < H(V ′; θ0). Assume by contradiction thatH(W ′; θ0) ≥ H(V ′; θ0).
Thus

θ−10 ≥ µ̂ess(W ) ≥
(

1− H(V, T ; θ0)

H(V ′; θ0)

)
T log p

pθ0
− n

2θ0
log(θ0 + 1) (5.1)

We recall that for large ν the Hilbert function H(V ; ν) is actually a
polynomial of degree dim(V ) and leading coefficient deg(V )/ dim(V )! . To
go on with the proof, we need a lower bound for H(V ′; θ0) and un upper
bound for H(V, T ; θ0). Fortunately, both are at our disposal. Let

m = k
(
δ0(V

′)− 1
)
.

14



By a (deep) result of M. Chardin and Philippon ([14], corollary 3) we have,
if θ0 > m,

H(V ′; θ0) ≥
(
θ0 + d−m

d

)
deg(V ′). (5.2)

On the other hand, from a result of M. Chardin [13] (see lemma 2.5 of [4]
for details), for any θ0 > 0,

H(V, T ; θ0) ≤
(
T − 1 + k

k

)(
θ0 + d

d

)
deg(V ). (5.3)

To exploit (5.2) we still need to compare δ0(V
′) with δ0(V ) and deg(V ′) with

deg(V ). These is the object of the following technical lemma whose proof is
omitted (see [7], lemma 3.8):

Lemma. Let t be the number of irreducible components of V ′. Then

deg(V ′) = tdeg(V ) and δ0(V
′) ≤ tδ0(V ).

Now we need some bounds for t. We recall the definition of stabilizer:

Stab(V ) = {α ∈ Gn
m | αV = V } =

⋂
x∈V

x−1V .

Thus Stab(V ) is an algebraic subgroup of dimension ≤ dim(V ). We remark
that we have equality of dimensions if and only if V is a translate of a
torus. Since Ker([p])V = ∪ζ∈Ker[p]ζV we have t = pn|Ker([p])∩Stab(V )|−1.
Remark that

|Ker([p]) ∩ Stab(V )| = pdimStab(V )|Ker([p]) ∩ (Stab(V )/Stab(V )0)|.

Thus, if p - [Stab(V ) : Stab(V )0], then t = pcodim(StabV ). By [18], lemma 8
and by (3.1) we have

deg(Stab(V )) ≤ deg(V )dim(V )+1 ≤ δnk0

which implies
log[Stab(V ) : Stab(V )0] ≤ nk log(δ0). (5.4)

Let
N ≈ (log(n2δ0))

k.

If for any prime p with N/2 ≤ p ≤ N we have p | [Stab(V ) : Stab(V )0] then

log[Stab(V ) : Stab(V )0] ≥
∑

N/2≤p≤N

log p� N. (5.5)

15



Equations (5.4) and (5.5) are not consistent. We conclude that there exists
a prime p - [Stab(V ) : Stab(V )0] satisfying N/2 ≤ p ≤ N . We choose a such
prime p. Thus

t = pcodim(StabV ) .

Since V is not a translate of a torus, k + 1 ≤ codim(StabV ) ≤ n. By the
lemma above,

deg(V ′) = tdeg(V ) ≥ pk+1 deg(V ) and δ0(V
′) ≤ tδ0(V ) ≤ pnδ0. (5.6)

The upper bound for δ0(V
′) in (5.6) gives

m ≤ kpnδ0 .

Choose
θ0 = md+m and T ≈ p1+1/k.

Thus θ0 > m as required for (5.2) and

θ0 � δ0 log(n2δ0)
kn (5.7)

as required in the statement of theorem 5.1. By (5.2) and (5.3) we get

H(V, T ; θ0)

H(V ′; θ0)
≤
(
T−1+k

k

)(
θ0+d
d

)
deg(V )(

θ0+d−m
d

)
deg(V ′)

.

By the lower bound for deg(V ′) given in (5.6) and by the choices of θ0 and T ,(
T−1+k

k

)(
θ0+d
d

)
deg(V )(

θ0+d−m
d

)
deg(V ′)

≤
(
T−1+k

k

)(
θ0+d
d

)(
θ0+d−m

d

)
pk+1

� T k

pk+1

(
1 +

m

θ0 −m

)d
<

1

2
,

say. Inserting these inequalities in (5.1) we finally obtain

θ−10 ≥
(

1− H(V, T ; θ0)

H(V ′; θ0)

)
T log p

pθ0
− n

2θ0
log(θ0 + 1)

≥
(
T log p

2p
− n

2
log(θ0 + 1)

)
θ−10 .

(5.8)

We have
T log p

2p
� p1/k log p� log(n2δ0)

and, by (5.7),
log(θ0 + 1)� log(n2δ0).
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Thus, choosing in an appropriate way the implicit constants in the param-
eters,

T log p

2p
− n

2
log(θ0 + 1) > 1

and (5.8) is inconsistent. This contradiction shows that we cannot have
H(W ′; θ0) ≥ H(V ′; θ0). Thus H(W ′; θ0) < H(V ′; θ0). Since W ′ ⊆ V ′ we
infer that there exists a homogeneous polynomial F of degree ≤ θ0 vanishing
on W ′ (and thus on V (θ−10 )) but not on V ′. Replacing F (x) by F (ζx) for a
suitable ζ ∈ ker[p], we can assume F 6= 0 on V (recall that W ′ is invariant
by translation by p torsion points).

�

6 Proof of theorem 3.1: from δ0(V ) to ω(V ).

In this section we deduce theorem 3.1 from the apparently weaker theo-
rem 3.2. We let

ω = ω(V ) and θ = ω
(
200n5 log(n2ω)

)nk2
.

We assume by contradiction that V (θ−1) is Zariski dense in V . For r ∈
{1, . . . , k}, let

Dr = ω
(
200n5 log(n2ω)

)rkn
and remark that Dr ≤ θ. We construct by induction a chain of varieties

X0 ⊇ X1 ⊇ · · · ⊇ Xr ⊇ · · · ⊇ Xk

satisfying for r = 0, . . . , k the following

Claimr

i) V ⊆ Xr;

ii) each irreducible component of Xr containing V has codimension ≥
r + 1;

iii) δ(Xr) ≤ Dr.

17



Theorem 3.1 is proved if we show that Claimk holds. Indeed, by Claimk

i) there exists an irreducible component W of Xr which contains V . By ii)
k = codim(V ) ≥ codimW ≥ k + 1. This gives a contradiction.

We now start our inductive construction.
• For r = 0, we choose for X0 a geometrically irreducible hypersur-

face containing V of minimal degree ω. As X0 is a hypersurface, δ0(X0) =
δ(X0) = degX0 = ω. Assertions i), ii) and iii) clearly hold.

• We assume that Claimr holds for some r ∈ {0, . . . , k − 1} and we
prove that Claimr+1 still holds. Let Xr be a Zariski closed set satisfying
conditions i), ii) and iii) of Claimr. Since V ⊆ Xr there exists at least
one irreducible component of Xr which contains V . Let W1, . . . ,Ws be the
irreducible components of Xr which contain V and let Ws+1, . . . ,Wt those
which do not contain V .

Let j ∈ {1, . . . , s}. Since δ(Xr) ≤ Dr, the variety Wj is an irre-
ducible component of an intersection of hypersurfaces of degree ≤ Dr. Thus
δ0(Wj) ≤ Dr. Moreover V is transverse and V ⊆ Wj . Thus Wj is not a
translate of a subtorus. Let

θ0 = Dr

(
27n2 log

(
n2Dr

))kn
.

By theorem 3.2 the set Wj(θ
−1
0 ) is contained in a hypersurface Zj which

does not contain Wj and such that degZj ≤ θ0. Furthermore

θ0 � δ
(

log(n2δ)
)rk0n+k0n � Dr+1

and a more precise computation shows that θ0 ≤ Dr+1. Since V ⊆ Wj and
θ0 ≤ Dr+1 ≤ θ, we have V (θ−1) ⊆Wj(θ

−1
0 ) ⊆ Zj . By assumption V (θ−1) is

Zariski dense in V . Thus, V ⊆ Zj for j = 1, . . . , s.
Let

Xr+1 = Xr ∩ Z1 ∩ · · · ∩ Zs.

We show that Xr+1 satisfy Claimr+1. Since V ⊆ Xr and V ⊆ Zj for
j = 1, . . . , s we have V ⊆ Xr+1. This shows assertion i). Since degZj ≤
θ0 ≤ Dr+1 for j = 1, . . . , s, we have δ(Xr+1) ≤ max{δ(Xr), Dr+1} ≤
max{Dr, Dr+1} = Dr+1, as required by iii). Let us show now assertion
ii). We decompose Xr+1 as

Xr+1 = W ′1 ∪ · · · ∪W ′s ∪W ′s+1 ∪ · · · ∪W ′t ,

where W ′j = Wj ∩ Z1 ∩ · · · ∩ Zs. For j = s + 1, . . . , t we have V 6⊆ Wj and
thus the variety V is not contained in any irreducible component of W ′j . For

18



j ∈ {1, . . . , s} we have Wj 6⊆ Zj . Moreover, by Claimr ii), codim(Wj) ≥ r.
Thus every irreducible component ofW ′j has codimension> codim(Wj)+1 ≥
r + 1 as required.

7 Small points

Without any additional effort, the method of the proof of theorem 3.1 can
be easily modified to get the following result (see [7], theorem 2.2):

Theorem 7.1. Let V0 ⊆ V1 be subvarieties of Gn
m of codimensions k0 and

k1 respectively. Assume that V0 is irreducible. Let

θ = δ(V1)
(
200n5 log(n2δ(V1))

)(k0−k1+1)k0n.

Then,

- either there exists a translate B of a torus such that V0 ⊆ B ⊆ V1 and
δ0(B) ≤ θ,

- or there exists a hypersurface Z of degree at most θ such that V0 6⊆ Z
and V0(θ

−1) ⊆ Z.

Note that theorem 3.1 becomes a corollary of this theorem (choose
V0 = V and V1 an irreducible hypersurface of degree ω(V ) containing V ).
Moreover, theorem 3.1 immediately implies an improved and explicit version
of theorem 1.5 of [6]. Let V ⊆ Gn

m be an irreducible variety of codimension
k. Define

θ = δ(V )
(
200n5 log(n2δ(V ))

)k2n
.

Let V0 be one of the finitely many irreducible components of

W = V (θ−1).

Then V0(θ−1) = V0. Apply theorem 7.1 to the irreducibile component V0
and to V1 = V . Then, V0 is contained in a translate B of a torus such that
B ⊆ V and δ0(B) ≤ θ. Varing V0 over all irreducibile components of W , we
conclude that W ⊆ ∪Bj where Bj ⊆ V are translates of tori with δ0(Bj) ≤ θ.
In particular, for all but finitely many α ∈ V 0, we have ĥ(α) ≥ θ−1.

Theorem 7.1 has the following arithmetic counterpart ([8], theorem 1.3),
which implies the lower bounds for µ̂ess(V ) in the arithmetic case and for
µ∗(V ) stated respectively in theorem 2.2 and theorem 2.3 (see exercise 7.5
and exercise 7.6).
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Theorem 7.2. Let V0 ⊆ V1 be subvarieties of Gn
m, defined over Q, of codi-

mensions k0 and k1 respectively. Assume that V0 is Q-irreducible. Let

θ = δ(V1)
(
935n5 log(n2δ(V1))

)(k0−k1+1)(k0+1)(n+1)
.

Then,

- either there exists a Q-irreducible B union of torsion varieties such
that V0 ⊆ B ⊆ V1 and δ0(B) ≤ θ,

- or there exists a hypersurface Z defined over Q of degree at most θ
such that V0 6⊆ Z and V0(θ

−1) ⊆ Z.

In the geometric case a further induction (suggested by Viada) leads us
to the following result ([7] theorem 1.2).

Theorem 7.3. Let V ( Gn
m be a variety of codimension k. We decompose

V as a (reduced) union Xk∪· · ·∪Xn, where Xj is an equidimensional variety
of codimension3 j. We define

θ = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)
.

Then,
V (θ−1) = Gk ∪ · · · ∪Gn

where Gj is either the empty set or a finite union of translates Bj,i of subtori
of codimension j such that δ0(Bj,i) ≤ θ. Moreover, for r = k, . . . , n,

r∑
i=k

θr−i degGi ≤
r∑
i=k

θr−i degXi ≤ θr . (7.1)

Remark that this theorem immediately implies (up to a log factor) con-
jecture 2.4.

We now describe the inductive process which allow to deduce theorem
7.3 from theorem 7.1. We construct:

• G1, . . . , Gn−1 such that each Gj is a finite (possibly empty) union of trans-
lates Bj,i of subtori of codimension j and such that δ0(Bj,i) ≤ θ;

3We allow the empty set as an equidimensional variety of arbitrary codimension with
no irreducibile components and degree zero.
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• equidimensional subvarieties X ′k, . . . X
′
n of codimension k, . . . , n

such that the following claim holds for r ∈ {k, . . . , n}

Claimr

i) if r > k then Gr−1 is a union of irreducible components of X ′r−1;

ii) V (θ−1) ⊆ Gk ∪ · · · ∪Gr−1 ∪X ′r ∪Xr+1 ∪ · · · ∪Xn;

iii)
∑r−1

i=k θ
r−i degGi + degX ′r ≤

∑r
i=k θ

r−i degXi.

Theorem 7.3 follows from our claim setting Gn := X ′n (which is again
a union of translates of subsubtori since it is a zero dimensional variety).
Indeed, by assertion ii) of Claimn, V (θ−1) ⊆ Gk ∪ · · · ∪Gn. By exercise 2.4
we may assume

V (θ−1) = Gk ∪ · · · ∪Gn .

We still have to prove (7.1) for r = k, . . . , n. Let r ∈ {k, . . . , n}. If r < n
we have deg(Gr) ≤ deg(X ′r) by Claimr+1 i). This is still true if r = n by
the choice of Gn. Thus assertion iii) of Claimr implies the first inequality
of (7.1). Corollary 5 of [23] (with m = n and S = Pn) shows that for
θ ≥ δ(V ) we have

r∑
i=k

θr−i degXi ≤ θr ,

which gives the second inequality of (7.1).

It remains to construct by induction the varieties Gj and X ′j and to
prove our claim.

We choose X ′k = Xk. Claimr is obviously satisfied. Let now r ∈
{k, . . . , n − 1} and suppose to have already constructed Gk, . . . , Gr−1, X

′
r

which satisfy Claimr. We want to construct Gr and X ′r+1 in such a way
that Claimr+1 is satisfied. We first remark that we may assume:

a) No irreducible component of X ′r is imbedded in Gk ∪ · · · ∪Gr−1;

b) Every irreducible component of X ′r meets V (θ−1).

This is clear because we can discard the irreducible components of X ′r not
satisfying a) or b) without changing ii) and iii) of Claimr. We then decom-
pose X ′r as

X ′r = Gr ∪W1 ∪ . . . ∪Ws (7.2)
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where Gr is the union of the irreducible components Br,i of X ′r which are
translates of subtori and such that δ0(Br,i) ≤ θ (possibly Gr = ∅) and where
W1, . . . ,Ws are the other irreducible components of X ′r.

Using conditions a), b) and exercise 2.4, it is easy to see (exercise 7.8)
that

Remark 7.4. Let B be a translate of a subtorus such that Wi ⊆ B ⊆ V for
some i ∈ {1, . . . , s}. Then δ0(B) > θ.

Let i ∈ {1, . . . , s}. We apply theorem 7.1 to the varieties V0 = Wi and
V1 = V . We have k0 = r ≤ n − 1 and k1 = k. The first conclusion of that
theorem cannot occur, because of the previous remark. Thus, the second
conclusion must hold. Namely, there exists a hypersurface Zi of degree ≤ θ
such that Wi 6⊆ Zi and Wi(θ

−1) ⊆ Zi. By Krull’s Hauptsatz, Wi ∩ Zi is
either the empty set or it is an equidimensional variety of codimension r+1.
We define

X ′r+1 = Xr+1 ∪
s⋃
i=1

(Wi ∩ Zi) .

By construction,

V (θ−1) ⊆ Gk ∪ · · · ∪Gr ∪X ′r+1 ∪Xr+2 ∪ · · · ∪Xn .

which is ii) of Claimr+1.

We now prove iii) of Claimr+1. By Bézout’s theorem, by the definition
of X ′r+1 and by degZi ≤ θ we deduce

degX ′r+1 ≤ θ
( s∑
i=1

degWi

)
+ degXr+1 .

Substituting
∑s

i=1 degWi = degX ′r − degGr (which rises directly from
(7.2)), we obtain

degX ′r+1 ≤ θ(degX ′r − degGr) + degXr+1 .

Thus
r∑
i=k

θr+1−i degGi + degX ′r+1 ≤
r∑
i=k

θr+1−i degGi

+ θ(degX ′r − degGr) + degXr+1

= θ
( r−1∑
i=k

θr−i degGi + degX ′r

)
+ degXr+1 .
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By iii) of Claimr we have

θ
( r−1∑
i=k

θr−i degGi + degX ′r

)
+ degXr+1 ≤

r+1∑
i=k

θr+1−i degXi .

This proves iii) of Claimr+1.

Exercice 7.1. Let V be an irreducible variety of codimension k which is
not a translate of a subtorus and B ⊆ V a translate of a subtorus of relative

codimension 1. Let θ = δ(V )
(
200n5 log(n2δ(V ))

)2(k+1)n
. Use theorem 7.1

to show that if δ0(B) > θ then B(θ−1) is empty.

Exercice 7.2. Let V ⊆W be subvarieties of Gn
m. Let

θ = δ(W )
(
200n5 log(n2δ(W ))

)(n−k)n(n−1)
.

Use theorem 7.3 to show that V (θ−1) ⊆
⋃
Bj where the Bj ⊆ W are trans-

lates of tori such that δ0(Bj) ≤ θ and
∑

j deg(Bj) ≤ θn.

Exercice 7.3. Let V be an irreducible subvariety of Gn
m which is not a

translate of a subtorus. Let θ0 = δ0(V )
(
200n5 log(n2δ0(V ))

)n(n−1)2
. Use

exercise 7.2 to show that V (θ−10 ) is contained in a finite union of translates
Bj of proper subtori such that V 6⊆ Bj, δ0(Bj) ≤ θ0 and

∑
j deg(Bj) ≤ θn0 .

Exercice 7.4. Let V be an irreducible subvariety of Gn
m. Let

θω = ω(V )
(
200n5 log(n2ω(V ))

)n(n−1)2
.

Use exercise 7.2 to show that V (θ−1ω ) is contained in a finite union of trans-
lates Bj of proper subtori such that δ0(Bj) ≤ θω and

∑
j deg(Bj) ≤ θnω. Note

that this implies that, for V transverse, µ̂ess(V ) ≥ θ−1ω .

Exercice 7.5. Let V be a Q-irreducible weak transverse subvariety of Gn
m.

Deduce a lower bound for µ̂ess(V ) depending on ω(V ) from theorem 7.2.

Exercice 7.6. Let V be a subvariety of Gn
m Q-irreducible weak transverse .

Deduce a lower bound for µ∗(V ) depending on δ(V ) from theorem 7.2.
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Exercice 7.7. Let V be a subvariety of ⊆ Gn
m of codimension k and let

B1, . . . , Bt be the maximal torsion subvarieties of V (see exercise 1.2). De-

fine θ = δ(V )
(
200n5 log(n2δ(V ))

)(n−k)n(n−1)
. Show that δ0(Bj) ≤ θ(V ) and

t∑
j=1

θ(V )dim(Bj) deg(Bj) ≤ θn

(and thus t ≤ θn).

Exercice 7.8. Prove remark 7.4.
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abéliennes”. C. R. Acad. Sci. Paris. Série I, 331 (2000), 587–592.

[17] E. Dobrowolski. “On a question of Lehmer and the number of irre-
ducible factors of a polynomial”. Acta Arith., 34 (1979), 391–401.

[18] M. Hindry. “Autour d’une conjecture de S. Lang”. Invent. Math., 94
(1988), 575–603.

[19] M. Hindry and J. H. Silverman, “Diophantine geometry. An introduc-
tion”. GTM 201. Springer-Verlag, Berlin, 2000.

[20] M. Laurent. “Equations diophantiennes exponentielles”. Invent. Math.
78 (1984), 299–327.

[21] D. H. Lehmer. “Factorization of certain cyclotomic functions”, Ann. of
Math. 34 (1933), 461–479.
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