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Abstract. Let K be a number field and let L/K be an infinite Galois exten-

sion with Galois group G. Let us assume that G/Z(G) has finite exponent. We

show that L has the Property (B) of Bombieri and Zannier: the absolute and
logarithmic Weil height on L∗ is bounded from below outside the set of roots

of unity by an absolute constant. We also discuss some features of Property

(B): stability by algebraic extensions, relations with field arithmetic. As a side
result, we prove that the Galois group over Q of the compositum of all totally

real fields is torsion free.

1. Introduction

Let h : Q −→ R+ be the absolute and logarithmic Weil height. Assuming that

α ∈ Q∗ is not a root of unity, D. H. Lehmer ([20], §. 13, page 473) suggested
that [Q(α) : Q]h(α) can be bounded below uniformly in α. Known as “Lehmer’s
problem” this question is still open, the best known result is a celebrate theorem
of Dobrowolski ([12]) which proves it up to a positive ε. Nevertheless, significant
progress has been made to understand the reach of this question. In particular,
in the context of multiplicative groups, the Weil height is the normalized height
and in the higher dimensional case, one can formulate a natural generalization of
Lehmer’s problem in the following way (see [1] and [25] for details and context).

We fix for simplicity the natural compactification Gnm ↪→ Pn of Gnm and denote
by h the Weil height on Pn(Q). One says that an algebraic set B of Gnm is torsion
if its geometric components are translates of subtori by torsion points.

Let α ∈ Gnm(Q), denote by B(α) ⊆ Gnm the smallest (for the inclusion) torsion
subvariety defined over Q and containing α. We define

ω(α) = inf
Z

(
deg(Z)

deg(B(α))

)1/codimB(α)(Z)

,

where Z runs over subvarieties Z ( B(α) defined over Q and containing α.
With these notations, one can conjecture (for n = 1, the statement is precisely

Lehmer’s problem):
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Conjecture 1.1. There exists a positive real number c(n) > 0 such that for every
non-torsion α ∈ Gnm(Q),

h(α) ≥ c(n)

ω(α)
.

In a less geometric tone, following the works of the first author with Dvornicich
and the third author ([2], [4]), one can conjecture a relative version of Lehmer’s
problem, where the ground field Q is replaced by its maximal abelian extension:

Conjecture 1.2. There exists a positive real number c > 0 such that for every
non-torsion α ∈ Gm(Q),

h(α) ≥ c

[Qab(α) : Qab]
.

As for the classical Lehmer’s problem, this conjecture is proved up to a positive
ε (see [4]). Interestingly, it is easy to remark (see [21], proposition 2.5, for a more
general statement) that the two dimensional case of conjecture 1.1 implies the
relative Lehmer problem (conjecture 1.2) and this can be explained by the fact
that Qab is the field Q((Gm)tors) generated by all the torsion points of Gm (when
working with abelian varieties, one should replace Qab by the field generated by
the torsion over some field of definition).

However, recent works suggest that this geometric interpretation is not sufficient
to fully put the Lehmer’s problem in its most natural and general context (for
instance, see [25]). The purpose of this work is to proceed towards a better un-
derstanding of which ground fields can be good candidates to formulate Lehmer’s
problem.

With this point of view, two natural concepts arise. For a field K to qualify
as a good candidate to replace Q in Lehmer’s problem, the Weil height should at
least be bounded below outside the roots of unity. Indeed, conjecture 1.2 implies
that Qab satisfies this property. Secondly, for diophantine geometry to be efficient,
one needs finiteness properties for the height. We thus introduce these notions.
Following Bombieri and the third author [9], we set:

Definition 1.3. Let A be a subset of the set of algebraic numbers.

(i) We say that A has the Bogomolov Property (B) if there exists a real number
T0 = T0(A) > 0 such that the set of non-zero α ∈ A of height < T0 consists
of all roots of unity in A.

(ii) We say thatA has the Northcott Property (N) if for any positive real number
T the set of α ∈ A of height < T is finite.

Of course, every number field has Property (B) and (N). Thus it should be
outlined that for these questions to be non trivial, the algebraic fields considered
need to be infinite extensions of Q.

In this paper, we shall explore these properties and suggest some questions,
mainly concentrating on Property (B). A positive answer would permit to some
extent a unification of the scattered examples of fields which are known to satisfy
(B) or (N).

There are several interesting examples of subfields of Q with Property (B).

(i) A first class of fields with Property (B) is provided by fields with bounded local
degrees at some finite place. Let K be a number field and L/K be an infinite ex-
tension. Fix a non-archimedean valuation v of K. We say that L/K has bounded
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local degree at v if there exists an integer d0 such that for every extension w of
v to L we have [Lw : Kv] ≤ d0. By a result of Bombieri and the third author
(see [9], Theorem 2), a Galois extension L/Q with bounded local degree at some
rational prime satisfies the Property (B). One can also put in this class the field
Qtr of all totally real algebraic numbers (the natural archimedean analogue would
be to say that L has a bounded degree at ∞ if it is totally real). Property (B) has
been established for Qtr by Schinzel, see [27] (also see the work of Smyth [28]).

(ii) Secondly, the maximal abelian Qab of Q satisfies (B) (see [2]), thus solving the
case [Qab(α) : Qab] = 1 of conjecture 1.2. More generally, the abelian closure Kab

of a number field K satisfies (B) (see [4]). Moreover, Property (B) holds uniformly
in [K : Q]; the height on (Kab)∗ outside roots of unity is bounded from below by a
positive constant depending only on [K : Q] (see [5]).

(iii) A third class has been recently exhibited by Habegger [16]. Let E be an ellip-
tic curve defined over Q. Then the field Q(Etors) obtained by adjoining all torsion
points of E has the Bogomolov Property. However, if E does not have complex
multiplication then there are no number fields K such that Q(Etors) ⊆ Kab (see
op. cit.).

Many other scattered examples can be exhibited. For instance, it can be noted
that if L/Q is an extension such that any number field contained in L has a large
enough discriminant, then Property (B) can be derived.

However the examples (ii) and (iii) are motivated by group theoretic properties.
This is clear for example (ii). For the the case of Q(Etors), the Frobenius at finite
super singular primes lies in the center of the Galois group. And, when we have ram-
ification, Lubin-Tate theory provides a suitable replacement of the Frobenius inside
a higher ramification group having sufficiently large centralizer (see [16] for details).
Example (i) can also be better understood by group theoretic properties, by con-
sidering Galois extensions having uniformly bounded local degrees at every finite
place. Indeed, this is equivalent to asking that the corresponding Galois group has
finite exponent, as it is proven by S. Checcoli (see [10] for a more precise statement).

Our first aim is to suggest an unification of the first two classes which seem more
closely related to Gm. In heuristic terms, one would like to find a Property (Π)
such that if G is a Galois group for which (Π) is true than any Galois extension
L/Q with Galois group G has the Bogomolov Property. Such a statement would be
even better if one could ensure that assuming G does not satisfy (Π), then there is
at least one normal extension L/Q with group G that does not have the Bogomolov
Property. Though we are far from such an understanding of the situation we would
like to suggest the following problem along these lines:

Problem 1.4. LetK/Q be an extension with bounded local degree at some rational
prime. Is it true that Kab has the Property (B)?

The first result of this article is a partial answer to this problem. In section 4 we
prove the following theorem, which is enough to contain both the first two classes of
examples quoted above and is thus a generalization of both [9], Theorem 2 and [5],
Theorem 1.2:
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Theorem 1.5. Let K be a number field and let L/K be an infinite Galois extension
with Galois group G. Let E ⊆ L be the subfield fixed by Z(G) and assume that E/K
has local degree at some non-archimedean valuation v of K bounded by d0. Then L
has the Property (B), uniformly in v, d0 and [K : Q].

More explicitly, there exists a positive function c which depends effectively only
on v, d0 and [K : Q] such that for any α ∈ L∗ which is not a root of unity we have
h(α) ≥ c.

As one can see, in this result, the main point is that L need not be abelian over
the base field K and it neither needs to be of bounded local degree.

If one wants to state results and questions purely in group theoretic terms as in
the heuristics above, it is easy to slightly weaken either problem 1.4 or theorem 1.5
by considering Galois extensions having uniformly bounded local degrees at every
finite place. Indeed, as already remarked, this is equivalent to asking that the
corresponding Galois group has finite exponent ([10]). To make things explicit,
here is how the weak form of problem 1.4 would read:

Problem 1.6. Let N be an abelian group, and H be a group of finite exponent.
Assume that the group G is an extension of H by N , i.e. fits in an exact sequence:

1 −→ N −→ G −→ H −→ 1 .

Then is it true that if K is a number field and L/K is a normal extension with
Galois group G, then L satisfies (B)?

Similarly, our Theorem 1.5 implies:

Corollary 1.7. Let K be a number field and let L/K be an infinite Galois extension
with Galois group G. Let us assume that G/Z(G) has finite exponent b. Then L
has the Property (B), uniformly in b and [K : Q].

We now move to question of the stability of these properties under finite exten-
sion. Assume that L/K is an abelian extension of a number field K. By the main
theorem of [4], F has the Property (B). Similarly, if L/Q has bounded local degree
at some rational prime, then F/Q has the same property and thus, by [9], it has
the Property (B). Therefore the following question arises naturally.

Problem 1.8. Let L be a field with Property (B) and let F/L be a finite extension.
Is it true that F has necessarily Property (B)?

In section 5 we give a negative answer to this question and we provide some
related remarks about possible ways of strengthening the requirements to ensure
stability. On the other hand, if an extension L/Q has Property (N), then every
finite extension F/L has again (N) (confer theorem 2.1 of [13]). Thus Property (B)
and Property (N) behave in radically different ways under finite extension.

One key example to keep in mind in studying the behavior of (B) under extension
is the compositum Qtr of all totally real fields. We devote section 7 to its study and
prove that the Galois group of Qtr over Q is torsion free (theorem 5.4). We need
this result of independent interest in section 5, and it was apparently not known.

Our section 6 is more speculative. We explore possible relations between Prop-
erty (B) and field arithmetic. Two central definitions in this area are Pseudo
Algebraically Closed and Hilbertian fields. We recall that a field K is Pseudo Alge-
braically Closed (PAC) if each absolutely irreducible variety defined over K has a
K-rational point (see [15], chapter 11, for more details). A field K is Hilbertian if



ON FIELDS WITH THE PROPERTY (B) 5

it satisfies Hilbert’s Irreduciblity Theorem: for every irreducible f ∈ K[x, y] which
is separable in x there exists a ∈ K such that f(x, a) is irreducible over K (see [15],
chapter 12, for more details). We consider the following problems. Does there exist
a PAC field K ⊆ Q which satisfies (B)? What are the relations between (B) and
hilbertianity? We give some evidence for a negative answer to the first question
and we provide examples of a Hilbertian (respectively non Hilbertian) field which
does not satisfy (respectively which satisfies) Property (B).

Aknowledgements. The authors are indebted with P. Dèbes, B. Deschamps and
M. Fried for useful discussions on the subject of sections 6 and 7. We also thank
D. Simon who provides us with the reference [18].

2. Notations and auxiliary results

LetK be a number field. Given a place v ofK we denote by |·|v the corresponding
absolute value normalized to induce on Q the underlying standard absolute value.

We shall use the following couple of lemmas. The first one is a technical obser-
vation that enables a form of “acceleration of convergence”. It helps us to simplify
some later computations and to avoid having to work with a large enough rational
prime (which would weaken lower bounds). It is also of independent interest.

Lemma 2.1. Let K be a number field, v be a finite place of K over a rational
prime p and let ρ > 0. Let γ1, γ2 ∈ OK such that |γ1 − γ2|v ≤ p−ρ. Then for

any non-negative integer λ we have |γp
λ

1 −γ
pλ

2 |v ≤ p−sp,ρ(λ) with sp,ρ(λ)→ +∞ for
λ→ +∞.
More precisely, let us define an integer k = kp,ρ by k = 0 if (p− 1)ρ > 1 and by

pk−1(p− 1)ρ ≤ 1 < pk(p− 1)ρ

otherwise. Then we can take

sp,ρ(λ) = pkρ+ max(0, λ− k) .

Proof. Let ζpλ be a primitive root of order pλ; let us moreover denote by the same
letter v the only valuation of K(ζpλ) extending v. We write

γp
λ

1 − γ
pλ

2 = (γ1 − γ2)

λ∏
j=1

∏
ζpj

(γ1 − ζpjγ2)

where the inner product is taken on the roots of unity ζpj of order pj . The ultra-
metric inequality and the fact that p is totally ramified in Q(ζpj ) shows that:

|γ1 − ζpjγ2|v = |γ1 − γ2 + (1− ζpj )γ2|v

≤ max(p−ρ, p−1/p
j−1(p−1))

= p−min(pj−1(p−1)ρ,1)/pj−1(p−1) .

Then |γp
λ

1 − γ
pλ

2 |v ≤ p−s with

s = ρ+

λ∑
j=1

min(pj−1(p−1)ρ, 1) = ρ+

k∑
j=1

pj−1(p−1)ρ+

λ∑
j=k+1

1 = pkρ+max(0, λ−k) .
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�

Next comes a second technical estimate. Assuming a suitable metric property,
we check that the predictable lower bound for the height follows. This is basically
straightforward but we feel that a self contained statement enables one to separate
the height machine from the metric inputs. It can also serve as a useful future
reference. Note that this argument has already been used implicitly in the proofs
of [2], Proposition 1, and of [5], Proposition 3.2.

Lemma 2.2. Let L/K be a Galois extension of number fields and let σ ∈ Gal(L/K).
Let ℘ be a prime of OK over the rational prime p. Let also a, b ≥ 1 be rational
integers and ρ > 0. Let us assume that

∀γ ∈ OL, ∀v |℘, |γa − σ(γ)b|v ≤ p−ρ .

Then for every α ∈ L such that αa 6= σ(α)b we have

h(α) ≥ 1

a+ b

(
[K℘ : Qp]
[K : Q]

ρ log p− log 2

)
.

Proof. Let v be a place of L, normalized to induce on Q the underlying standard
place. We shall estimate |αa − σ(α)b|v. Suppose to start with that v |℘.

By the Strong Approximation Theorem, there exists an integer β ∈ OL such
that αβ is an integer and

|β|v = max{1, |α|v}−1.

(see [2], Lemma 1, for details). Then we have |(αβ)a − σ(αβ)b|v ≤ p−ρ and
|βa − σ(β)b|v ≤ p−ρ. Using the ultrametric inequality, we deduce that

|αa − σ(α)b|v = |β|−av |(αβ)a − σ(αβ)b + (σ(β)b − βa)σ(α)b|v
≤ c(v) max(1, |α|v)a max(1, |σ(α)|v)b

with c(v) = p−ρ. This last inequality plainly holds for an arbitrary place w of L
with

c(w) =

{
1, if w -∞, w - ℘ ;

2, if w |∞ .

Applying the Product Formula to αa − σ(α)b we get:

0 =
∑
w

[Lw : Qw]

[L : Q]
log |αa − σ(α)b|w

≤
∑
w

[Lw : Qw]

[L : Q]
(log c(w) + a log max{1, |α|w}+ b log max{1, |σ(α)|w})

=

∑
w |∞

[Lw : Qw]

[L : Q]

 log 2−

∑
w |℘

[Lw : Qw]

[L : Q]

 ρ log p+ ah(α) + bh(σ(α))

= log 2− [K℘ : Qp]
[K : Q]

ρ log p+ (a+ b)h(α) .

The conclusion follows. �
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We now fix some notations which we follow in the next two sections.
Let K be a number field of degree d over Q. We consider a finite Galois extension

L/K of Galois group G. Let N be a normal subgroup of G contained in Z(G). We
let E = LN be the fixed field of N . We remark that N is abelian (since it is
contained in Z(G)). Thus L/E is an abelian extension of Galois group N .

We fix a prime ideal q of OE . Let ℘ = q ∩ OK and let (p) = ℘ ∩ Z. We define
d0 as the local degree [Eq : K℘].

We also denote by µ ⊂ Qab the group of roots of unity and by µp∞ ⊂ µ the
subgroup of roots of unity of order a power of p.

3. A conditional result

The main result of this section is the following generalization of Proposition 3.2
of [5]. This is where we input the metric property that we shall feed Lemma 2.2
with. Assume first that q does not ramify in OL. The point is to note that with a
bounded local degree downstairs, the Frobenius morphisms of the primes of L over
q can be to some extent glued together above. A similar consideration holds when
q ramifies in OL.

Proposition 3.1. Let α ∈ L∗\µ. Assume further that for any non trivial τ ∈
Gal(L/E)

(3.1) τ(α)/α 6∈ µp∞ .

Then

h(α) ≥ c
for some c > 0 depending only on p, d0 and d.

Furthermore, one can relax the assumption (3.1) by requiring instead that for
every τ ∈ Gal(L/E),

(3.2) τ(α)/α 6∈ µp∞\{1} .

Proof. Note first that the supplement is trivial. Indeed Gal(E(α)/E) is a nor-
mal subgroup of Gal(E(α)/K) contained in the center, so, replacing L by E(α) if
necessary, we can assume L = E(α) and in this case (3.2) reduces to (3.1).

A first case occurs when q does not ramify in L. Let φ be the Frobenius auto-
morphism of Q/q, where Q is any prime of OL over q. Since L/E is abelian, φ does
not depend on the choice of Q. Thus for any γ ∈ OL

γq ≡ φ(γ) mod qOL ,

where q is the norm of q. Let now q′ be another prime ideal of OE over ℘, fix a
prime Q′ of OL over q′ and let φ′ be the Frobenius of Q′/q′. Then φ and φ′ are
both in N and are conjugate in G. Since N is contained in Z(G) we deduce that
φ′ = φ. This shows that for any γ ∈ OL and for any place v of L with v |℘ we have

|γq − φ(γ)|v ≤ p−1/e0 ,

where e0 is the ramification index of q over ℘.
Since α is not a root of unity, αq − φ(α) 6= 0. Thus, we can apply Lemma 2.2

and obtain:

h(α) ≥ 1

q + 1

(
[K℘ : Qp]
de0

log p− log 2

)
.
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This lower bound is non trivial only if p[K℘:Qp] ≥ 2de0 . In order to avoid this
restriction on the prime p, we rather first use the acceleration Lemma 2.1.

This lemma shows that there exists λ depending only on p, on e0 and on d such
that

|γqp
λ

− φ(γ)p
λ

|v ≤ p−2d .

Since α is not a root of unity, αqp
λ − φ(α)p

λ 6= 0. By Lemma 2.2

h(α) ≥ 1

pλ(q + 1)
(2[K℘ : Qp] log p− log 2) ≥ log 2

pλ(q + 1)
= c1

where c1 > 0 clearly depends only on p, d0 and d since q ≤ pd0 and e0 ≤ d0.

Assume now that ℘ is ramified in L and let, as in [5] Proposition 2.3,

Hq := {τ ∈ N such that ∀γ ∈ OL, τγq ≡ γq mod qOL}

where q is the norm of q. By the quoted proposition, Hq is non trivial. As in the
non-ramified case, let q′ be another prime ideal of OE over ℘. Then Hq and Hq′

are both subgroups of N and are conjugate in G. Since N is contained in Z(G)
we deduce that Hq′ = Hq. Let τ be a non trivial automorphism of this subgroup.
Then, for any γ ∈ OL and for any place v of L with v |℘ we have

|γq − τ(γ)q|v ≤ p−1/e0 ,

where e0 is the ramification index of q over ℘. We use Lemma 2.1 and Lemma 2.2

as in the first part of the proof. We remark that αqp
λ−τ(α)qp

λ 6= 0 thanks to (3.1).
We get h(α) ≥ c2 for some c2 > 0 depending only on p, d0 and d. It is now enough
to choose c = min(c1, c2). �

4. An unconditional result and the proof of Theorem 1.5

The radical reduction of [5], section 4, does not apply in the present situation.
Indeed, following the beginning of the proof of Proposition 4.3 in op.cit., k is not
necessarily a power of a prime and so we cannot bound the degree of E(ζk)/E in
terms of d0 and d. Nevertheless, we can modify the argument of op.cit. in such a
way that it applies in the present situation. As an extra-bonus the proof becomes
simpler. Indeed, in op.cit. we perform an unnecessary reduction, using in two
different steps essentially the same argument. This new approach could also be of
independent interest and applicable to close situation, namely to the relative lower
bound ([4]) and to the subsequent generalizations of both abelian and relative lower
bounds (see [8], [11], [24], [16]), where a kind of descent step is always used.

We first state a simplified and slightly precise version of a special case of [5],
Lemma 4.2. The present statement applies only to subgroups of (Z/kZ)∗ for k a
prime power, but this is enough for our purposes.

Lemma 4.1. Let p be a rational prime, k be a power of p and B be a positive
integer. Then, for every subgroup H of (Z/kZ)∗ of index < B, there are integers
x, y such that x mod k ∈ H, y mod k ∈ H and

2 < y − x < 6B .
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Proof. The proof is a straightforward application of the box principle. We give
some details for the sake of completeness. Let Λ = {x ∈ N | x mod k ∈ H} and
define, for j ∈ N, the real interval

Ij = [6(j − 1)B, 6jB) .

Assume by contradiction

∀j ∈ N, |Ij ∩ Λ| ≤ 3 .

Let J be a large enough integer and put r = [6JB/k]. Then

r|H| = |Λ ∩ [0, rk)| ≤ |Λ ∩ [0, 6JB)| ≤ 3J

which implies 2B|H| ≤ 6JB/r ≤ k(r + 1)/r. Letting J → +∞ we get a contradic-
tion:

2B|H| ≤ k ≤ 2(1− 1/p)k = 2|(Z/kZ)∗| < 2B|H| .
Thus there exist integers x = x1 < x2 < x3 < x4 = y in one Ij ∩ Λ i.e. such that
xi mod k ∈ H and y − x < 6B. �

We can now prove an unconditional version of Proposition 3.1. Note that the
main argument of the proof as a cohomological flavor.

Proposition 4.2. Let α ∈ L∗\µ. Then

h(α) ≥ c′

for some c′ > 0 depending only on p, d0 and d.

Proof. There exists k = pl (l ≥ 0) and a primitive k-root of unity ζk ∈ L such that

L ∩Q(µp∞) = L ∩Q(ζk) .

We identify Gal(E(ζk)/E) to a subgroup of (Z/kZ)∗ of index, say, B−1. By Galois
theory, B − 1 = [E ∩ Q(ζk) : Q]. Since k is a power of p, the prime p is totally
ramified in E ∩Q(ζk). This shows that B− 1 ≤ e(q|p) ≤ d0d. By Lemma 4.1 there
exist σ1, σ2 ∈ Gal(E(ζk)/E) such that σiζk = ζgik with g = g2 − g1 satisfiying

(4.1) 2 < g < 6(d0d+ 1) .

Let σ̃i ∈ Gal(L/E) extending σi. We want to apply Proposition 3.1 with α ← β,
where

(4.2) β =
σ̃2(α)

αgσ̃1(α)
.

To do this we need to prove that β 6∈ µ and that τ(β)/β 6∈ µp∞\{1} for any
τ ∈ Gal(L/E). Let us verify these requirements. We argue by contradiction.

Let us first assume that β ∈ µ. Then, by (4.2),

gh(α) = h(αg) = h(σ̃2(α)/σ̃1(α)) ≤ 2h(α) .

Since g > 2 by (4.1) we get α ∈ µ. Contradiction.
Let us now assume that there exists τ ∈ Gal(L/E) such that θ := τ(β)/β ∈

µp∞\{1}. Let η = τ(α)/α. Apply (4.2) and its conjugate by τ , taking into account
that we are working in an abelian extension of E. We obtain

θ =
τ(β)

β
=

τ σ̃2(α)

τ(αg)τ σ̃1(α)

(
σ̃2(α)

αgσ̃1(α)

)−1
=

σ̃2(η)

ηgσ̃1(η)
.
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Hence

gh(η) ≤ 2h(η) ,

which implies h(η) = 0 by (4.1). Thus η ∈ µ. Write η as η = η1η2 with η1 ∈ µp∞
and with η2 of order not divisible by p. By Bezout’s identity, η1 ∈ Q(η) ⊆ L. Thus
there exists an integer a such that η1 = ζak . By the choice of σ̃i we see that

σ̃2(η1)

ηg1 σ̃1(η1)
= 1 .

Thus

θ =
σ̃2(η2)

ηg2 σ̃1(η2)

has order not divisible by p. But θ ∈ µp∞ and θ 6= 1. Contradiction.

Applying (3.1) with α← β we get h(β) ≥ c. By (4.1) and (4.2),

h(β) ≤ (g + 2)h(α) ≤ (6d0d+ 7)h(α) .

Thus

h(α) ≥ c′

with c′ = c/(6d0d+ 7). �

We are now in position to prove Theorem 1.5. Let K be a number field and let
L/K be an infinite Galois extension with Galois group G. Let E ⊆ L be the subfield
fixed by Z(G) and assume that E/K has local degree at some prime ℘ bounded by
d0. Let α ∈ L∗ not a root of unity. We choose a subfield L′ ⊆ L containing α and
such that L′/K is a finite Galois extension. We put E′ = L′∩E. Then it is easy to
see that L′/E′ is Galois and Gal(L′/E′) is contained in the center of Gal(L′/K).
Moreover E′/K has local degree at ℘ bounded by d0. By Proposition 4.2, the height
of α is bounded from below by a positive constant depending only on ℘, d0 and on
[K : Q]. Theorem 1.5 follows.

5. Property (B) and field extensions

In this section we show that Property (B) is not generally preserved under fi-
nite extension. As remarked in the introduction, this on the contrary holds for
Property (N).

Let Qtr be the compositum of all totally real extensions. Thus Qtr is a Galois
extension of Q and α ∈ Qtr if and only if α is totally real. We denote by i a
square root of −1 in Q. Note that Qtr(i)/Q is also Galois, as the composite of the
Galois extensions Qtr/Q and Q(i)/Q. Let τ be the generator of Gal(Qtr(i)/Qtr).
Then for any Q-embedding σ : Qtr(i) ↪→ C we have σ = στ . This implies that if
an archimedean absolute value of α ∈ Qtr(i) is 1 then all its archimedean absolute
values are equal to 1. The following lemma shows that the converse is also true.

Lemma 5.1. Let α ∈ Q be such that all its archimedean absolute values are equal
to 1. Then α ∈ Qtr(i).

Proof. We define

a =
1

2
(α− α−1), b =

1

2i
(α− α−1) .
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Then α = a+bi and a, b ∈ Qtr. Indeed, let σ : Qtr(i) ↪→ C. Since 1 = |σα|2 = σα·σα
we have

σa =
1

2
(σα+ σα) = Re(σ(α)), σb =

1

2σ(i)
(σα− σα) = Im(σ(α)) .

�
Remark 5.2. We recall that a number field L is a CM field if it is a totally complex
quadratic extension of a totally real number field. It is well-known (see for instance
[29], p.38) that in a CM field L the complex conjugation defines an involution τ of L
which is independent of the embedding into C, i.e. for any Q-embedding σ : L ↪→ C
we have σ = στ . Let α ∈ L. The argument of the proof of Lemma 5.1 shows that

a =
1

2
(α+ τ(α)), b =

1

2i
(α− τ(α))

are totally real. Thus α = a + ib ∈ Qtr(i). This proves that any CM field is
contained in Qtr(i) (and actually Qtr(i) is the compositum of all CM fields).

We are now in position to give the promised example.

Theorem 5.3. The field Qtr satisfies (B), but its quadratic extension Qtr(i) does
not.

Proof. For the first assertion, see [27] and [28]. For the second one, [3], Theorem
1.3, shows that there exists an infinite sequence (αk) of algebraic numbers such
that the fields Q(αk) are CM-fields, αk is not a root of unity, and h(αk) → 0. By
Remark 5.2, Q(αk) ⊆ Qtr(i). Thus the field Qtr(i) does not satisfy (B). A more
direct example is the following. For k ∈ N let

αk =

(
2− i
2 + i

)1/k

.

Then all the archimedean absolute values of αk are equal to 1. Thus, by Lemma 5.1,
αk ∈ Qtr(i). Obviously αk is not a root of unity and h(αk) → 0 (note, however,
that extracting roots is not the only manner to construct number of small height
in Qtr(i). See again [3], sections 4 and 5 for details). �

In view of this example, it may not be out of place to study the Galois group
of Qtr/Q. The absolute Galois group of Qtr is known. By a result of Freid, Haran
and Völklein (see [14]) Gal(Q/Qtr) is freely generated by a subset of involutions,
homeomorphic to the Cantor set. Nevertheless, nothing is apparently known on
Gal(Qtr/Q).

By a well known theorem of Artin-Schreier-Baer (see [6] and [7]) the only non
trivial elements of finite order in the absolute Galois group Gal(Q/Q) are the com-
plex conjugations. In the present situation we have:

Theorem 5.4. There is no automorphism of finite order > 1 in Gal(Qtr/Q).

We shall give a proof of this theorem in section 7. For the moment, let us reflect
on some consequences of this statement.

Let G be a profinite group such that any Galois extension L/Q with Galois
group G satisfy (B). Let L/Q be any of such extensions. We could ask if any finite
extension of L satisfy again (B).
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The group G = Gal(Qtr/Q) provide a counterexample to this assertion. Indeed,
if L/Q has Galois group G, then L ⊆ Qtr. Otherwise we could find an involution
in G, contradicting Theorem 5.4. By the quoted result of [27] and [28], any Galois
extension L/Q with Galois group G satisfy (B).

Thus G is a profinite group such that any Galois extension L/Q with Galois
group G satisfy (B). However, as proved in theorem 5.3, Qtr(i) is a quadratic ex-
tension of L = Qtr which does not satisfy (B) and Gal(L/Q) = G.

The situation seems to be different if we allow base change.

Definition 5.5. Let G be a profinite group. We say that G has the Property (B)
if for any number field K and for any Galois extension L/K with Galois group G,
the field L satisfies (B).

By Galois theory, a profinite group G satisfies (B) if and only if at least one of
its subgroups of finite index satisfies (B). Indeed, let H be a subgroup of finite index
of G which satisfies (B). Let L/K be a Galois extension of a number field K such
that Gal(L/K) = G. Then LH is a finite extension of K, hence a number field.
Since Gal(L/LH) = H satisfies (B), the field L satisfies (B).

We remark that Gal(Qtr/Q) does not satisfy (B). Indeed, Gal(Qtr(i)/Q(i)) u
Gal(Qtr/Q) and the field Qtr(i) does not satisfy (B).

We also remark that groups G with G/Z(G) of finite exponent satisfy (B), by
our main theorem 1.5. Moreover, let L/K be a Galois extension of a number field
with Galois group abelian or of finite exponent. Then any finite extension of L
satisfies again (B), as we have already seen in the introduction in the special case
K = Q.

More generally, let G be a profinite group such that all its subgroups of finite
index satisfy (B) (this is the case for abelian groups and for groups of finite expo-
nent). Then any finite extension E of a Galois extension L/K of a number field
satisfies (B), provided that Gal(L/K) = G. To see this, select a primitive element
α ∈ E over L. Thus E = L(α) and, by Galois theory L(α)/K(α) is a Galois
extension with Galois group isomorphic to H = Gal(L/L ∩ K(α)) ⊆ G of index
[L ∩K(α) : K] ≤ [K(α) : K] <∞. Since K(α) is a number field, if H satisfies (B)
then L(α) satisfies (B).

These remarks suggest the following questions:

Problem 5.6. Let G be a profinite group which satisfy (B).

i) Is it true that any subgroup of G of finite index satisfies (B)?
ii) Let K be a number field and let L/K be a Galois extension with Galois

group G. Is it true that any finite extension of L satisfies (B)?

By the remarks above, i) implies ii).

Let 1→ H → G′ → G→ 1 be a group extension of profinite groups. A positive
answer to problem 5.6 ii) would imply that if H is finite and G satisfies (B), then
G′ satisfies (B). We remark that we cannot replace “H finite” by “H satisfies (B)”
in this last statement. Indeed, for p prime the field

L = Q(µp∞ , 2
1/p, 21/p

2

, . . .)
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obviously does not satisfy (B). However, its Galois groupG′ over Q is an extension of
a pro-finite abelian group by another pro-finite abelian group, thus both satisfying
(B) in the sense of definition 5.5:

H = Gal(Q(µp∞)/Q) u Z∗p, and G = Gal(L/Q(µp∞)) u Zp .

6. Relations with field arithmetic

In this section we explore some speculative relations between Property (B) and
field arithmetic.

We recall that a field K is Pseudo Algebraically Closed (PAC) if each absolutely
irreducible variety defined over K has a K-rational point (see [15], chapter 11,
for more details). Obviously an algebraically closed field is PAC. We give some
evidences for a negative answer to the following problem:

Problem 6.1. Does there exist a PAC field K ⊆ Q which satisfies (B)?

First we remark that algebraic extensions of PAC fields are again PAC fields by
a theorem of Ax-Roquette ([15], corollary 11.2.5). Similarly, if K does not satisfy
(B) and if E/K is an algebraic extension, than E does not satisfy (B).

Only few examples of non-trivial PAC subfields of Q are known. For instance,
as a consequence of a deep result of Pop, Qtr(i) is a PAC field (see [22], Theorem
S, p.21 and [17], section 7 before Lemma 7.1). Determining whether or not the
maximal solvable extension Qsolve of Q is PAC is an open question (see [15], problem
11.5.9 (a)). Observe that both Qtr(i) and Qsolve do not have Property (B). This is
obvious for the second field (just add roots of 2) and it is true for the first one by
theorem 5.3.

Another example of PAC subfield of Q is provided by the compositum Qsymm

of all symmetric extensions of Q (i.e. of all Galois extensions over Q with Galois
group a symmetric group), see [15], Th. 18.10.4. Again, this field does not satisfy
(B). To prove this statement, it is enough to find a family L1, L2, . . . of symmetric
extensions of Q such that

lim
n→+∞

inf{h(α) | α ∈ Ln, α not a root of unity} = 0 .

We can choose for {Ln} the set of splitting fields of xp + x + 1 for p > 3 prime,
p 6≡ 1 mod 4. Indeed if p is prime, xp+x+1 is irreducible and, if p satisfies the said
condition, its splitting field is a symmetric extension (see [18]). Moreover, let α be a
root of xp+x+1. Then α is not a root of unity and ph(α) = h(α+1) ≤ h(α)+log 2
by well known properties of Weil’s height. Thus h(α) ≤ (log 2)/(p − 1) → 0 as
p→ +∞.

The absolute Galois group Gal(Q/Q) is a compact group, thus admits a trans-
lation invariant Haar mesure. Let e ∈ N. By a theorem of Jarden (PAC Nullstel-
lensatz, see [15], Th. 18.6.1), for almost all σ = (σ1, . . . , σe) ∈ Gal(Q/Q)e the field

Qσ
fixed by σ1, . . . , σe is PAC. It is again quite simple to prove that any such field

does not satisfy (B):

Proposition 6.2. Let H be a finitely generated subgroup H of Gal(Q/Q). Then

QH does not satisfy (B).

Proof. Let σ1, . . . , σe be generators of H. We fix a positive integer N . For n ∈ N
we have σin

1/N = ζ
ai,n
N n1/N for some ai,n ∈ Z, 0 ≤ ai,n < N . By the box principle,
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there exist n1, n2 with 1 ≤ n1 < n2 ≤ Ne+ 1 such that ai,n1 = ai,n2 for i = 1, . . . e.

Thus αN := (n1/n2)1/N is fixed by all σi, henceforth it is in QH . We have

0 < h(αN ) =
h(n1/n2)

N
≤ 2 log(Ne + 1)

N
→ 0

as N →∞. This shows that QH does not satisfy (B). �

Another central definition in field arithmetic is the hilbertianity. A field K
is Hilbertian if it satisfies Hilbert’s Irreduciblity Theorem: for every irreducible
f ∈ K[x, y] which is separable in x there exists a ∈ K such that f(x, a) is irreducible
over K (see [15], chapter 12, for more details). As for PAC fields, we could ask
for relations between hilbertianity and (B). But now, we do not have any direct
implication. Indeed Qtr is not hilbertian (choose f(x, y) = x2−y2−1) and satisfies
(B); on the contrary Qtr(i) is hilbertian (by Weissauer’s Theorem, [15], chapter
13, Theorem 13.9.1) and does not satisfy (B). Another example of field with these
properties is Qsymm which is hilbertian (see [15], Theorem 18.10.4) and does not
satisfy (B), as already remarked.

7. On the Galois group Gal(Qtr/Q)

The field Qtr has a subset of totally positive elements, i.e. , those all of whose
conjugates are nonnegative. We shall repeatedly use the easy observation that:

A square root of a totally positive element lies in Qtr.

Indeed, if α is totally positive, and β2 = α, we have (σβ)2 = σα, which is real
and ≥ 0 for every Q-embedding σ : Q ↪→ C; hence σβ ∈ R for each such σ, as
asserted.

We shall now prove Theorem 5.4. Let σ be a non trivial Q-automorphism of
finite order of the field of totally real algebraic numbers. By replacing σ with a
power of it, we may suppose that its order is a prime l. We shall derive a contra-
diction. Let us start with the

Case l = 2.

Since σ is supposed to have order 2, its fixed field F is such that [Qtr : F ] = 2.
We have Qtr = F (β) for a β such that α := β2 ∈ F .

We shall use the following

Lemma 7.1. The number α is a sum of two squares of elements of F .

Proof. We shall use a result of Hilbert and Landau (see [19], Exercise 1, p. 461,
or [23], Theorem. 15.11, p. 224): a totally positive α is a sum of squares in Q(α). In
the Appendix below we shall give a self-contained proof of this result (theorem 8.1).

Note that since β is totally real, α is totally positive. By the quoted result, α is
then a sum of squares in Q(α), hence in F . Let α = a21 + . . .+ a2m, a1, . . . , am ∈ F ,
be such a representation with minimal m. If m ≥ 2, let ξ := a21 + . . .+ a2m−1. Since

the ai lie in Qtr, we have that ξ is totally positive. Hence
√
ξ is totally real, i.e.

there exists µ ∈ Qtr with µ2 = ξ. We can write µ = p + βq with p, q ∈ F , and
then ξ = p2 + αq2 + 2pqβ. Since ξ ∈ F we must have pq = 0, but of course we
may assume that p, q do not both vanish. If p = 0, then q 6= 0 and we obtain a
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representation of α as a sum of m − 1 squares, a contradiction. Then q = 0. But
then ξ = p2 and α = p2 + a2m, as required. �

By Lemma 7.1, we may find x, y ∈ F ∗ such that x2−αy2 = −1. Set γ := x+βy,
so N(γ) = −1, where N is the norm from Qtr to F .

We have N(γ2) = 1. Set η := 1 + γ2, and denote with an accent the said
automorphism (i.e. the conjugation of Qtr over F ). We have γ2(γ′)2 = 1, so
η′ = 1 + (γ′)2 = 1 + γ−2 = ηγ−2.

Since γ ∈ Qtr, the element η is totally positive, whence η = δ2 for some δ ∈
(Qtr)∗. Hence γ2(δ′)2 = δ2, leading to γ = ±δ/δ′. But then N(γ) = 1 and we have
a contradiction, concluding the proof in the case l = 2.

As pointed out by B. Deschamps, a more direct proof in the case l = 2 follows
from a result of Diller and Dress (see [26], Ch. IX, §7 and [23]) on pythagorean fields.

Case l > 2.

We recall that Qtr(i)/Q is also Galois, as the composite of the Galois extensions
Qtr/Q and Q(i)/Q. Note that Qtr(i) contains all roots of unity (as an immediate
consequence of Lemma 5.1). We also recall that the complex conjugation of C
defines an automorphism τ of Qtr(i) which is independent of the embedding into
C. By abuse of notation, we shall denote this automorphism by the usual symbol
α := τ(α).

Let L denote the fixed field of σ in Qtr; we may extend σ to an automorphism,
denoted again σ, of Qtr(i), fixing i, so L(i) is the fixed field of σ in Qtr(i) and
[Qtr(i) : L(i)] = [Qtr : L] = l. Note that Qtr(i) contains the l-th roots of unity,
whose degree over L(i) divides l − 1; but this degree also divides l, whence L(i)
contains the l-th roots of unity. By Kummer’s theory we then have Qtr(i) = L(i)(β)
where βl =: α ∈ L(i), and σ(β) = θβ for some primitive l-th root of unity θ. Since
L ⊂ Qtr, L(i) is sent into itself by complex conjugation, so also β generates Qtr(i)

over L(i) and β
l

= α ∈ L(i). By Kummer’s theory again, we have

(7.1) β = γβr, γ ∈ L(i) ,

for some r coprime to l (only its residue class mod l matters in (7.1)).

Applying to (7.1) complex conjugation we get β = γβ
r
, and using (7.1) in this

last equation we obtain

β = γγrβr
2

,

whence βr
2−1 ∈ L(i). Since βl ∈ L(i) and β is not in L(i) this yields r2 ≡ 1

(mod l), so r ≡ ±1 (mod l), and then we may suppose r = ±1 in (7.1), so also
γγr = 1.

If r = 1 we have γγ = 1 whence (by Hilbert 90 for L(i)/L) γ = u/u for some
u ∈ L(i). Then uβ = uβ, so uβ is totally real, and then uβ ∈ Qtr. But since σ
fixes L(i) pointwise and stabilizes Qtr, this contradicts that σ(β)/β is a primitive
l-th root of unity, so not totally real.

Therefore we have r = −1, and ββ = γ ∈ L(i) (actually γ ∈ L since this shows
it is totally real).

Note now that Qtr(i) = L(i)(ρβs) for every ρ ∈ L(i)∗ and every s coprime
to l, hence we may replace β with such ρβs to generate Qtr(i)/L(i). We choose
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s = 2 and ρ = (ββ)−1, so ρβs = β/β =: ξ, say, and Qtr(i) = L(i)(ξ), where
µ := ξl = β2l/γl ∈ L(i).

All conjugates of ξ have absolute value 1, so all the conjugates of ξ
1
l have absolute

value 1, and therefore, by Lemma 5.1 ξ
1
l lies in Qtr(i), for every choice of the l-th

root. Note that (ξ
1
l )l

2

= ξl = µ.
At this point the proof mimics an argument of Artin, proving that C has no

automorphisms of finite odd order (see Lang’s quoted book, p. 299, Cor. 9.3). The

polynomial xl
2 − µ = xl

2 − ξl lies in L(i)[x] and has a root (actually all roots) in
Qtr(i). But [Qtr(i) : L(i)] = l, so the polynomial is reducible. By Capelli’s Theorem
(see Lang’s quoted book, Ch. VIII, Theorem 16), we have µ = al for some a ∈ L(i).
This yields ξ = ζa for an l-th root of unity ζ, and since ζ lies in L(i) as noted above,
we deduce that ξ ∈ L(i), a contradiction which proves the theorem.

8. Appendix

In this Appendix we provide a self-contained proof of the following result, used
in the proof of Lemma 7.1:

Theorem 8.1. Let α be a totally real algebraic number. Then an element of Q(α)
is a sum of squares in Q(α) if and only if it is totally positive.

Proof. This theorem is due to Hilbert and Landau, in a more general form when
α is not necessarily totally real and it is required that all embeddings in R of the
relevant number are positive. See Lang’s ([19]) or Rajwade’s ([23]) above-quoted
references for a proof which depends on Artin-Schreier’s theory of real fields. The
simple proof below is independent of this theory and would seemingly work with
small modifications also for the more general assertion.

To prove Theorem 8.1 note that one half of the conclusion is clear and so it
suffices to work on the assumption that α is totally positive, and to prove that α
is a sum of squares in Q(α).

We let d := [Q(α) : Q] and we denote by α1 = α, α2, . . . , αd the (positive)
distinct conjugates of α over Q.

There are polynomials f1, . . . , fd ∈ R[x] of degree at most d − 1, and such that
fi(αj) equals 2 if i = j and 0 otherwise (just solve a Vandermonde linear system, or
else take fi(x) = ci

∏
r 6=i(x−αr) with ci = 2

∏
r 6=i(αi−αr)−1). Let us choose ε > 0

as a real positive number < minαi
2dmaxαi

. By approximating the coefficients of fi with

rational numbers, and squaring, we may then find polynomials g1, . . . , gd ∈ Q[x]
(also of degree ≤ d− 1) such that, for i = 1, . . . , d,

(8.1) g2i (αi) > 1, g2i (αj) < ε, j 6= i.

Define vectors v1, . . . , vd ∈ Rd by

vi := (g21(αi), . . . , g
2
d(αi)).

Note that v1, . . . , vd are R-linearly independent: if t1v1 + . . . + tdvd = 0 with real
ti not all 0, we may assume on dividing by a coefficient of maximal absolute value,
that tr = 1 for some 1 ≤ r ≤ d, while |ti| ≤ 1 for i = 1, . . . , d. The relation implies
t1g

2
r(α1) + · · ·+ tdg

2
r(αd) = 0, whence 1 < g2r(αr) ≤ (d− 1)ε, a contradiction with

the said choice of ε.
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Then we may find (uniquely!) real numbers c1, . . . , cd such that

(8.2) αi = c1g
2
1(αi) + · · ·+ cdg

2
d(αi), i = 1, . . . , d.

The ci are surely in Q(α1, . . . , αd), but must actually be in Q, as can be seen by
uniqueness and taking conjugates of these relations, or also directly by noting that
the independence of the vi amounts to the fact that g21(α), . . . , g2d(α) is a basis of
Q(α)/Q.

We contend that ci ≥ 0 for all i. Indeed, let M := max |ci| and suppose that
M = |cr|. Evaluating (8.2) at i = r and recalling (8.1) we have

M ≤ ε(d− 1)M + |αr| ≤M/2 + max |αi|,
proving that M ≤ 2 max |αi|. Now, suppose by contradiction that cs < 0, and
evaluate (8.1) at i = s. We obtain

0 < αs ≤
∑
j 6=s

cjg
2
j (αs) ≤M(d− 1)ε ≤ 2(d− 1)(max |αi|)ε .

But this contradicts our choice of ε.
Then the ci are nonnegative rationals, and therefore each of them is a sum of

squares of rational numbers: for a, b positive integers, the fraction a
b is the sum of

ab equal squares 1
b2 . Then, relation (8.2) for i = 1 proves the sought conclusion. �

Remark 8.2. Note that the proof shows that only d distinct squares (each repeated
a suitable number of times) suffice to represent α in the sought shape.
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