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Abstract: We prove close to sharp lower bounds for the height of an algebraic
number in a Galois extension of Q.

1. Introduction

For an algebraic number α of degree d denote by h(α) ≥ 0 the absolute loga-
rithmic Weil height, that is

h(α) =
1

d

(
log |a|+

∑
i

max{log |αi|, 0}

)
,

where a is the leading coefficient of a minimal equation over Z for α and αi are its
algebraic conjugates. Recall that h(α) = 0 if and only if α = 0 or α is a root of
unity. The well-known Lehmer Problem from 1933 asks whether there is a positive
constant c such that

h(α) ≥ cd−1

whenever α 6= 0 has degree d and is not a root of unity. This is still unsolved, but
the celebrated result of Dobrowolski [7] implies that for any ε > 0 there is c(ε) > 0
such that h(α) ≥ c(ε)d−1−ε (we will not worry about logarithmic refinements in
this note).

The inequality in the Lehmer Problem has been established for various classes
of α. Thus Breusch [5] proved it for non-reciprocal α, in particular whenever d is
odd (see also Smyth [14] for the best possible constant), and David with the first
author [1, Corollaire 1.7] proved it when Q(α)/Q is a Galois extension. See also
their Corollaire 1.8 for a generalization to extensions that are “almost Galois”.

In this note we improve the result in the Galois case, and we even show that for
any ε > 0 there is c(ε) > 0 such that

h(α) ≥ c(ε)d−ε

when Q(α)/Q is a Galois extension. This is related to a problem posed by Smyth
during a recent BIRS workshop (see [12, problem 21, p. 17]), who asks for small
positive values of h(α) for α ∈ Q with Q(α)/Q Galois.

2. Auxiliary results

We start with a lower bound for the height which is crucial in the proof of the
next section.

Theorem 2.1. Let K/Q be an abelian extension and let α1, . . . , αr be multiplica-
tively independent algebraic numbers. Then for any ε > 0 there exists C(ε) > 0
such that

max
i
h(αi) ≥ C(ε)D−1/r−ε
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where D = [K(α1, . . . , αr) : K].

This deep result (which we have stated in a simplified form) was proved in sev-
eral steps. In the special cases K = Q and r = 1, it is the main result of [1] and [3]
respectively. The general case (see [6]) was the object of the Ph.D. Thesis of E.
Delsinne, under the supervision of the first author.

We now state a result whose proof is implicit in [1, Corollaire 6.1].

Lemma 2.2. Let F/Q be a Galois extension and α ∈ F×. Let ρ be the multiplica-
tive rank of the conjugates α1, . . . , αd of α over Q, and suppose ρ ≥ 1. Then there
exists a subfield L ⊆ F which is Galois over Q of degree [L : Q] = n ≤ n(ρ) and
an integer e ≥ 1 such that Q(ζe) ⊆ F (for a primitive eth root of unity ζe) and
αe ∈ L.

Proof. Let e be the order of the group of roots of unity in F , so that F contains
Q(ζe). Define βi = αei (i = 1, . . . , d) and L = Q(β1, . . . , βd). The Z-module

M = {βa11 · · ·β
ad
d | a1, . . . , ad ∈ Z}

is torsion free (by the choice of e) and so, by the Classification Theorem for abelian
groups, is free, of rank ρ. This shows that the action of Gal(L/Q) overM defines
an injective representation Gal(L/Q) → GLρ(Z). Thus Gal(L/Q) identifies to a
finite subgroup of GLρ(Z). But, by well-known results (see Remark 2.3 below),
the cardinalities of the finite subgroups of GLρ(Z) are uniformly bounded by, say,
n = n(ρ).

�

Remark 2.3. To quickly see that the order of a finite subgroup of GLρ(Z) is
uniformly bounded by some n(ρ) <∞, apply Serre’s result [13] which asserts that
the reduction mod 3 is injective on the finite subgroups of GLρ(Z). This gives

the bound n(ρ) ≤ 3ρ
2
. More precise results are known. Feit [8] (unpublished)

shows that the orthogonal group Oρ(Z) (of order 2ρρ!) has maximal order for
ρ = 1, 3, 5 and for ρ > 10. For the seven remaining values of ρ, Feit characterizes
the corresponding maximal groups. See [9] for more details and for a proof of the
weaker statement n(ρ) ≤ 2ρρ! for large ρ.

We finally recall a well-known estimate on the Euler’s totient function φ(·) (see
for instance [10, Theorem 328, p.267]):

(2.1) lim inf
n→∞

φ(n) log log n

n
= e−γ .

3. Main results

We now state two results about α which merely lie in Galois extensions, so are
not necessarily generators.

Theorem 3.1. For any integer r ≥ 1 and any ε > 0 there is a positive effective
constant c(r, ε) with the following property. Let F/Q be a Galois extension of
degree D and α ∈ F×. We assume that there are r conjugates of α over Q which
are multiplicatively independent (so that α is not a root of unity). Then

h(α) ≥ c(r, ε)D−1/(r+1)−ε.
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Proof. The new ingredient with respect to Corollaire 1.7 of [1] is the main result
of Delsinne [6], which was not available at that time. We use standard abbrevia-
tions like �ε,�r,ε.

Let α1, . . . , αd (with d ≤ D) be the conjugates of α over Q (so that they lie in
F ). Their multiplicative rank is at least r. If it is strictly bigger, then Theorem 2.1
(with K = Q) applied to r + 1 independent conjugates gives

h(α)�r,ε D
−1/(r+1)−ε .

Thus we may assume that the rank is exactly r.
By Lemma 2.2 there exists a number field L ⊆ F of degree [L : Q] = n ≤ n(r)

and an integer e ≥ 1 such that Q(ζe) ⊆ F and αe ∈ L.
Now let ε > 0. Since αe ∈ L and [L : Q] ≤ n,

(3.1) h(α) =
1

e
h(αe)�r

1

e
.

On the other hand, the degree of F over the cyclotomic extension Q(ζe) is
D/φ(e) and α1, . . . , αr ∈ F are multiplicatively independent. By Theorem 2.1
(with K = Q(ζe)) we have

(3.2) h(α)�r,ε (D/φ(e))−1/r−ε �r,ε e
1/rD−1/r−ε

(use (2.1)). Combining (3.1) and (3.2) we get

h(α)r+1 = h(α)h(α)r �r,ε D
−1−rε.

�

Taking r = 1 we get

Corollary 3.2. For any ε > 0 there is a positive effective constant c(ε) with the
following property. Let F/Q be a Galois extension of degree D. Then for any
α ∈ F× which is not a root of unity we have

h(α) ≥ c(ε)D−1/2−ε .

For a direct proof of this corollary, which uses [3] instead of the deeper result
of [6], see [11, exercise 16.23].

We remark that Corollary 3.2 is optimal: take for F the splitting field of xd−2,
with D = dφ(d), and α = 21/d. Nevertheless, as mentioned above, this result can
be strengthened for a generator α of a Galois extension.

Theorem 3.3. For any ε > 0 there is a positive effective constant c(ε) with the

following property. Let α ∈ Q× be of degree d, not a root of unity, such that
Q(α)/Q is Galois. Then we have

h(α) ≥ c(ε)d−ε .

Proof. Let r be the smallest integer> 1/ε. If r ≥ d then d ≤ 1+1/ε and h(α)�ε

1. So we can assume r < d. If r among the conjugates of α are multiplicatively
independent, by Theorem 2.1 (with K = Q) we have

h(α)�ε d
−1/r−ε �ε d

−2ε .

Otherwise, the multiplicative rank ρ ≥ 1 of the conjugates of α is at most r− 1 ≤
1/ε. By Lemma 2.2 there exists a number field L ⊆ Q(α) of degree [L : Q] = n ≤
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n(ε) and an integer e ≥ 1 such that Q(ζe) ⊆ Q(α) and αe ∈ L. As a consequence
L(α)/L is of degree e′ ≤ e. The diagram

Q

k := L ∩Q(ζe)

L Q(ζe)

L(ζe)

Q(α) = L(α)

shows that the degree of α over Q(ζe) is

[Q(α) : L(ζe)] · [L(ζe) : Q(ζe)] = e′
[L(ζe) : Q(ζe)]

[L(ζe) : L]

which is

e′
[L : k]

[Q(ζe) : k]
= e′

[L : Q]

[Q(ζe) : Q]
=

e′

φ(e)
n ≤ e

φ(e)
n�ε d

ε

(use φ(e) ≤ d and (2.1)). By Theorem 2.1 (with K = Q(ζe) and r = 1) we get

h(α)�ε d
−2ε .

�

We note that Theorem 3.3 is nearly best possible in the sense that an inequality
h(α) � dδ would be false for any fixed δ > 0. For example for α = 1 + ζe with

d = φ(e) one has h(α) ≤ log 2. Or α = 21/e + ζe, whose degree is easily seen
to be eφ(e), with h(α) ≤ 2 log 2. But Smyth in [12] quoted above asked whether
even h(α)� 1 is true, a kind of “Galois-Lehmer Problem”. We do not know, but
it would imply the main result of Amoroso-Dvornicich [2] on abelian extensions,
and a slightly weaker result of Amoroso-Zannier [4, Corollary 1.3] on dihedral
extensions.
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