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A uniform relative Dobrowolski’s lower bound over abelian
extensions

Francesco Amoroso and Umberto Zannier

Abstract

Let L/K be an abelian extension of number fields. We prove a uniform lower bound for the
height in L∗ outside roots of unity. This lower bound depends only on the degree [L : K].

1. Introduction

Let h be the Weil height on Q and let µ be the set of roots of units. Let L be an abelian
extension of the rational field. In a joint work with Dvornicich [2] the first author, for any
α ∈ L∗ \ µ, proved that

h(α) � log 5
12

(1.1)

giving a positive answer to a question of Bombieri and the second author. This result
was generalized by several authors replacing Q

∗
by more complicated group varieties

(see [4, 5, 9, 14]).
Later, in a joint paper [3], we proved a ‘relative’ result, which combines the lower bound (1.1)

with a celebrated result of Dobrowolski [8]. Let L be an abelian extension of a number field K
and let α ∈ Q

∗ \ µ. Then

h(α) � c(K)
D

(
log log 5D

log 2D

)13

,

where D = [L(α) : L] and where c(K) > 0 (see [10] for a generalization to elliptic curves). More
recently, the first author and Delsinne [1] have refined the error term in this inequality and
computed a lower bound for c(K). As the proof of the original paper suggested, this lower
bound depends on the degree and on the discriminant of K.

In this paper we are interested in uniform lower bounds for the height on an abelian extension
of a number field K. We define

γab(K) = inf{h(α) such that α ∈ L∗ \ µ, L/K abelian}.
As a very special case of the result of [3], we have γab(K) � c(K) and, by the results of [1],
we have c(K) is bounded from below by an explicit positive function depending on the degree
and on the discriminant of K. A question which has been raised explicitly by a number of
mathematicians is whether γab(K) may be bounded below in terms only of the degree of K,
namely the following.

Problem 1.1. Is it true that γab(K) � f([K : Q]) for some positive function f(·)?

We give a positive answer to this question.
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Theorem 1.2. Let K be a number field of degree d over Q and let α ∈ Q
∗ \ µ. Assume

that K(α)/K is abelian. Then

h(α) > 3−d2−2d−6.

In other words, γab(K) > 3−d2−2d−6.

Let L be a dihedral extension of the rational field of degree 2n. Then L is an abelian extension
of its quadratic subfield fixed by the normal cyclic group of order n. Thus we have the following
corollary.

Corollary 1.3. Let L be a dihedral extension of the rational field and let α ∈ L∗ \ µ.
Then

h(α) � 3−14.

For further examples, results and conjectures, see Section 5.
The proof of Theorem 1.2 does not follow by a straightforward adaptation of the previous

methods and requires several new arguments and tools. We shall need a finer use of ramification
theory and especially a new descent argument to eliminate dependence on discriminants; this
was totally absent in the quoted papers in this topic.

More precisely, here is a sketch of how these new arguments come into the proof.
Let L/K be an abelian extension of number fields and let ℘ be a prime ideal of K over a

rational prime p. Let q = N℘. Assume that ℘ is ramified in L and consider the subgroup

H℘ := {σ ∈ Gal(L/K) such that ∀γ ∈ OL, σγq ≡ γq mod ℘OL}.
If K℘ = Qp, then L is locally contained in a cyclotomic extension of Q by the Kronecker–Weber
theorem. Using this remark, we proved in [3, Lemma 3.2], that H℘ is non-trivial. Here we need
a generalization of this result, dropping the assumption K℘ = Qp. This is done in Section 2,
using ramification theory. In Section 3 we prove a lower bound for the height of α ∈ L, under
the technical assumption K(αq) = K(α): this follows from the papers [2, 3] (see especially
Lemma 3.2 therein).

However, to remove such an annoying technical assumption in the most general case we need
a totally new ‘kummerian’ descent argument, which is developed in Section 4.

2. Ramification

We recall some basic facts about higher ramification groups. Let L/K be a normal extension of
number fields with Galois group G. Let ℘ be a prime ideal of K and let Q be a prime ideal of
L over ℘. We consider the decomposition group G−1 = G−1(Q/℘) = {σ ∈ G such that σ(Q) =
Q} and (for k = 0, 1, . . .) the kth ramification group

Gk = Gk(Q/℘) = {σ ∈ G such that ∀γ ∈ OL, σγ ≡ γ mod Qk+1}.
Then G ⊇ G−1 ⊇ G0 ⊇ G1 ⊇ . . . Moreover, for all k � 0, we have that Gk is a normal subgroup
of G−1. Let (p) = ℘ ∩ Z. Writing e := |G0| = e0p

a with (e0, p) = 1, we have |G0/G1| = e0.
Let π be a uniformizer at Q (that is, π ∈ Q \ Q2). We consider the map

θ0 : G0/G1 → (OL/Q)∗,

which sends σ to the class of σ(π)/π. We also consider, for k � 1, the map

θk : Gk/Gk+1 → Qk/Qk+1,
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DOBROWOLSKI’S LOWER BOUND OVER ABELIAN EXTENSIONS Page 3 of 10

which sends σ to the class of σ(π)/π − 1. Then (cf. [7, Proposition 10.1.14]) we have the
following proposition.

Proposition 2.1. The maps θk are well-defined and injective. Moreover, they do not
depend on the choice of the uniformizer π.

Let us now assume that G−1 is an abelian group. Then we have the following proposition.

Proposition 2.2. (i) The image of θ0 is contained in (OK/℘)∗.
(ii) For all k � 1, the image of θk is contained in a OK/℘ vector space of dimension 1.

In particular

|Gk/Gk+1| � N℘ (2.1)

for k = 0, 1, . . . .

Proof. For (i), see [6, Corollary 2, p. 136]. For (ii), a straightforward computation shows
that the image of θk is fixed by G−1. Indeed let τ ∈ Gk, σ ∈ G−1 and α := τπ/π − 1. Also let
σ(π) = xπ with x �∈ Q. Thus σ−1(π) = σ−1(x−1)π and

τ(π) = στσ−1(π) = (στ)(σ−1(x−1)π)

= τ(x)−1(στ)(π)

= τ(x)−1σ(π + απ)

= τ(x)−1x(1 + σ(α))π.

Since τ ∈ Gk and x �∈ Q, it follows that τ(x)−1x ≡ 1(πk+1). Thus α = τ(π)/π − 1 ≡
σ(α)(πk+1). Since θk(τ) is the class of α in Qk/Qk+1, this last congruence proves that

θk(τ) = σ(θk(τ)) . (2.2)

Now let v0, v ∈ Im(θk) with v0 �= 0 (if Gk/Gk+1 is trivial, then the result is clear). Since
Qk/Qk+1 is a vector space of dimension 1 over OL/Q, we have v = λv0 for some λ ∈ OL/Q.
Equation (2.2) shows that λ is fixed by G−1. Since Gal(OL/Q/OK/℘) ∼= G−1/G0, we infer
that λ ∈ OK/℘. Thus Im(θk) is contained in the OK/℘-vector space spanned by v0.

Proposition 2.3. Let L/K be an abelian extension of number fields with Galois group G
and let ℘ be a prime ideal of K, ramified in L. Let q = N℘. Then

H℘ := {σ ∈ G such that ∀γ ∈ OL, σγq ≡ γq mod ℘OL}
is a non-trivial subgroup of G.

Proof. As before, let G−1 and Gk be the decomposition group and the ramification groups
of a prime Q over ℘ (since G is abelian, these groups do not depend on the choice of Q). Let
e = |G0| and (p) = ℘ ∩ Z. We write as before e = e0p

a with (e0, p) = 1. Assume first that ℘ is
tamely ramified in L. Thus e = e0 = |G0/G1| � q, by (2.1) of Proposition 2.2. Let σ ∈ G0 and
γ ∈ OL; then

(σγ − γ)q ∈ Qq ⊆ Qe

and

(σγ − γ)q ≡ σγq − γq mod pOL.
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Page 4 of 10 FRANCESCO AMOROSO AND UMBERTO ZANNIER

This implies

σγq ≡ γq mod ℘OL.

Thus H℘ ⊃ G0. On the other hand, G0 is non-trivial because ℘ ramifies in L by assumption.
Let us now assume p | e. By the Hasse–Arf theorem (see [12, § 7, Theorem 1′, p. 101]) we

have

∀j � 1, Gj �= Gj+1 =⇒ 1
e

j∑
i=1

|Gi| ∈ Z.

Let k � 1 such that Gk �= Gk+1 = {1}. We also define h = 0 if Gk = G1 and otherwise we
define h � 1 by

Gh �= Gh+1 = . . . = Gk �= Gk+1 = {1}.
Then

1
e

h∑
i=1

|Gi| ∈ Z and
1
e

k∑
i=1

|Gi| ∈ Z .

Thus e divides
k∑

i=h+1

|Gi| = (k − h)|Gk| = (k − h)|Gk/Gk+1|.

Thus, by inequality (2.1) of Proposition 2.2 we have e � kq.
Therefore, for any σ ∈ Gk−1 and for any γ ∈ OL

(σγ − γ)q ∈ Qkq ⊆ Qe.

As before, this implies

σγq ≡ γq mod ℘OL.

Thus {1} �= Gk−1 ⊆ H℘ ⊆ G0.

3. A first lower bound

The following is Lemma 1 of [2].

Lemma 3.1. Let L be a number field and let ν be a non-archimedean place of L. Then, for
any α ∈ L∗ there exists an algebraic integer β ∈ L such that βα is also integer and

|β|ν = max{1, |α|ν}−1.

We now prove our main proposition.

Proposition 3.2. Let K be a number field of degree d over Q. Let ℘ be a prime ideal of
K. We denote q = N℘. Let α ∈ Q

∗ \ µ and assume that K(α) is an abelian extension of K.
Assume further

K(α) = K(αq). (3.1)

Then

h(α) � log(q1/d/2)
2q

.
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DOBROWOLSKI’S LOWER BOUND OVER ABELIAN EXTENSIONS Page 5 of 10

Proof. Let (p) = ℘ ∩ Z and let e = e(℘/p) and f = f(℘/p) be respectively the ramification
index and the inertial degree of ℘ over p.

A first case occurs when ℘ does not ramify in L; let then φ be the Frobenius automorphism
of Q/℘, where Q is any prime of L over ℘ (since L/K is abelian, φ does not depend on the
choice of Q).

Let ν be a place of L := K(α), normalized so as to induce on Q one of the standard places.
We shall estimate |αq − φ(α)|ν . Suppose to start with that ν |℘.

By Lemma 1, there exists an integer β ∈ L such that αβ is integer and

|β|ν = max{1, |α|ν}−1.

Then (αβ)q ≡ φ(αβ)mod ℘OL and βq ≡ φ(β)mod ℘OL. We recall that ∀γ ∈ ℘OL we have
|γ|ν � p−1/e. Using the ultrametric inequality, we deduce that

|αq − φ(α)|ν = |β|−q
ν |(αβ)q − φ(αβ) + (φ(β) − βq)φ(α)|ν

� |β|−q
ν max(|(αβ)q − φ(αβ)|ν , |βp − φ(β)|ν |φ(α)|ν)

� max(1, |α|ν)qp−1/e max(1, |φ(α)|ν).

Suppose now that ν is a finite place not dividing ℘. Then we have plainly

|αq − φ(α)|ν � max(1, |α|ν)q max(1, |φ(α)|ν).

Finally, if ν |∞, then we have

|αq − φ(α)|ν � 2max(1, |α|ν)q max(1, |φ(α)|ν).

Moreover x := αq − φ(α) �= 0, since α is not a root of unity. Indeed, if x = 0, then qh(α) =
h(αq) = h(φ(α)) = h(α), which implies that h(α) = 0. We apply the product formula to x as
follows:

0 =
∑
ν � ∞
ν � ℘

[Lν : Qν ]
[L : Q]

log |x|ν +
∑
ν |℘

[Lν : Qp]
[L : Q]

log |x|ν +
∑
ν |∞

[Lν : Qν ]
[L : Q]

log |x|ν

�
∑

ν

[Lν : Qν ]
[L : Q]

(q log+ |α|ν + log+ |φ(α)|ν) − log p

e

∑
ν |℘

[Lν : Qp]
[L : Q]

+
∑
ν |∞

[Lν : Qν ]
[L : Q]

log 2

= qh(α) + h(φ(α)) − [K℘ : Qp] log p

e[L : Q]

∑
ν |℘

[Lν : Qp]
[K℘ : Qp]

+ (log 2)
∑
ν |∞

[Lν : Qν ]
[L : Q]

.

We recall that h(φ(α)) = h(α). Moreover, we have
∑
ν |∞

[Lν : Qν ]
[L : Q]

= 1,
∑
ν |℘

[Lν : Qp]
[K℘ : Qp]

= [L : K]

and [K℘ : Qp] = ef . Thus, we have

0 � (q + 1)h(α) + log 2 − f

d
log p,

that is

h(α) � log(q1/d/2)
q + 1

� log(q1/d/2)
2q

.

Assume now that ℘ is ramified in L and let σ be a non-trivial automorphism in the subgroup
H℘ defined in Proposition 2.3. Let ν be a place of L dividing ℘ and let β be as in the first part
of the proof. We have (αβ)q ≡ σ(αβ)q mod ℘OL and βq ≡ σβq mod ℘OL. Using the ultrametric

 at B
ibliothÃ

¨que U
niversitÃ

©
 de C

aen on M
arch 23, 2010 

http://blm
s.oxfordjournals.org

D
ow

nloaded from
 

http://blms.oxfordjournals.org


Page 6 of 10 FRANCESCO AMOROSO AND UMBERTO ZANNIER

inequality, we find that

|αq − σ(α)q|ν = |β|−q
ν |(αβ)q − σ(αβ)q + (σβq − βq)σ(α)q|ν

� p−1/e max(1, |α|ν)q max(1, |σ(α)|ν)q.

Assume that σ(α)q = αq. Since σ(α) �= α, we have K(αq) � K(α), which contradicts
hypothesis (3.1).

Thus x := αq − σ(α)q �= 0. Applying the product formula to x as in the first part of the
proof, we get

0 � 2qh(α) + log 2 − f

d
log p.

Therefore, we have

h(α) �
log

(
q1/d/2

)
2q

.

4. Radicals reduction

In this section we show that a slightly weaker version of Proposition 3.2 still holds without
assuming (3.1). The proof of the main theorem will follow.

We need the following lemma (perhaps known, but for which we have no reference).

Lemma 4.1. Let B and k be integers with B � 5 and k � 60B log B. Then, for every
subgroup H of (Z/(k))∗ of index at most B, there are h1, h2 ∈ H such that

2 < h1 − h2 � 60B log B.

Proof. Write an integer decomposition k = k1k2, where k1 is divisible only by primes
bounded by B5 and where k2 is coprime to any such prime. Then gcd(k1, k2) = 1 and we have
a decomposition (Z/(k))∗ ∼= (Z/(k1))∗ × (Z/(k2))∗ = G1G2, say, where G1 = (Z/(k1))∗ × {1},
G2 = {1} × (Z/(k2))∗. Further, for i = 1, 2 consider Hi := H ∩ Gi, and hence [Gi : Hi] � B.

By the corollary to Theorem 7 of [11], for any x > 1, we have
∏
l�x

(
1 − 1

l

)
>

e−γ

log x

(
1 − 1

(log x)2

)
,

where γ is Euler’s constant and in the product l runs through prime numbers. Since B � 5, it
follows that

k1

ϕ(k1)
=

∏
l�B5

(
1 − 1

l

)−1

< 5eγ

(
1 − 1

(5 log 5)2

)−1

log B < 10 log B, (4.1)

where ϕ is Euler’s function. Let s be the integer defined by
1
3 |H1| − 1 � s < 1

3 |H1|.
We have |H1| � ϕ(k1)/B, and hence by (4.1) and since k1 � 60B log B, it follows that

s � ϕ(k1)
3B

− 1 � k1

30B log B
− 1 � k1

60B log B
.

By the Pigeon-hole principle, there exist integers x1, . . . , x4 whose class modulo k1 is in H1

and such that

x1 < x2 < x3 < x4 and x4 − x1 <
k1

s
� 60B log B.

Let x = x1 and t = x4 − x1. Then x, x + t ∈ H1 and 2 < t � 60B log B.
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DOBROWOLSKI’S LOWER BOUND OVER ABELIAN EXTENSIONS Page 7 of 10

Now let la be the power of the prime l dividing exactly k2 and set H(l) = H ∩ (Z/(la))∗,
where we view the group on the right as a subgroup of G2, as before. Let V (l) be the kernel of the
reduction r : (Z/(la))∗ → (Z/(l))∗ modulo l. Remark that the index b = [(Z/(la))∗ : H(l)] � B.
Since [(Z/(la))∗ : V (l)] = l − 1 and l > B, we have V (l) ⊆ H(l). Thus r(H(l)) has index b in F∗

l

and r(H(l)) = {ub |u ∈ F∗
l }. The curve Xb − Y b = t over Fl has a plane projective closure which

is non-singular, because 0 < t < l, and whose genus is g � (B − 1)(B − 2)/2. By a celebrated
theorem of Weil (but more elementary methods amply suffice for this case), the curve has
then at least l + 1 − 2g

√
l projective points. Hence at least l + 1 − 2g

√
l − 3b of them lie in

the affine piece and have XY �= 0; in turn, since B � 5, this lower bound is greater than
l − 2g

√
l − 3B � B5 − B2B5/2 − 3B > 0. Hence there is xl so that the images of both xl and

xl + t lie in the reduction of H(l) and hence in H(l), which contains the kernel of reduction.
Finally, it suffices to pick by the Chinese Theorem an h2 congruent to x modulo k1 and to

xl modulo la, for each l dividing k2, and to consider h1 := h2 + t.

We introduce the following notation. Let α ∈ Q such that K(α)/K is a Galois extension. We
define

Γα := {ρ ∈ Gal(K(α)/K) : ρ(α)/α ∈ µ}.
Note that Γα is a subgroup of Gal(K(α)/K). We let Lα := K(α)Γα be its fixed field; note that
K(α)/Lα is Galois with group Γα.

We need the following simple generalization of a classical lemma in Kummer’s theory. Given
an integer k, we let ζk be a primitive kth root of unity.

Lemma 4.2. Let α ∈ Q and let k be a positive integer such that any root of unity of the
shape ρ(α)/α for ρ ∈ Γα has order dividing k. Let σ ∈ Gal(K(ζk)/K) and assume that K(α)/K
is abelian. Then, for any extension σ̃ ∈ Gal(K(α, ζk)/K), we have

σ̃α/αg ∈ Lα,

where g = gσ is defined by σζk = ζgσ

k and gσ ∈ [1, k).

Proof. Let ρ ∈ Γα; then ρα = ζu
k α for some u ∈ Z. Consider α′ = σ̃α; note that α′ lies in

K(α) because it is a conjugate of α over K. Then, since K(α, ζk)/K is also abelian (as a
composite of abelian extensions of K), we have

ρα′/α′ = ρσ̃α/σ̃α = σ̃(ρα/α) = σζu
k = ζugσ

k = (ρα/α)gσ .

Thus α′/αgσ is fixed by ρ for all ρ ∈ Γα, and therefore it lies in Lα.

Proposition 4.3. Let K be a number field of degree d over Q and let ℘ be a prime ideal
of K. Let q = N℘, α ∈ Q

∗ \ µ and assume that K(α) is an abelian extension of K. Then

h(α) � log(q1/d/2)
364d log(3d)q

.

Proof. We choose an integer k > 180d log(3d) such that any root of unity of the shape
ρ(α)/α for ρ ∈ Γα has order dividing k.

Note that Gal(K(ζk)/K) may be seen as a subgroup of (Z/k)∗ of index at most [K : Q] = d.
We choose B = 3d � 6 in Lemma 4.1. Since k � 180d log(3d), the assumptions of this lemma
are satisfied. We thus see that there exist σ1, σ2 ∈ Gal(K(ζk)/K) such that

2 < gσ2 − gσ1 < 180d log(3d).
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Page 8 of 10 FRANCESCO AMOROSO AND UMBERTO ZANNIER

We define g = gσ2 − gσ1 . By Lemma 4.2 we have

σ̃2(α) = c αgσ̃1(α) (4.2)

with c ∈ Lα. We recall that
2 < g < 180d log(3d). (4.3)

We want to apply Proposition 3.2 to c. For this purpose we need to check that (i) c �∈ µ and
that (ii) K(c) = K(cq). Let us verify these requirements.

(i) c �∈ µ: Assume the contrary. Then, by (4.2),

gh(α) = h(αg) = h(σ̃2(α)/σ̃1(α)) � 2h(α).

Since g > 2, we get α ∈ µ, which is a contradiction.
(ii) K(c) = K(cq): Assume the contrary. Note that K(c)/K(cq) is Galois, as a subextension

of the abelian extension K(α)/K. Then, let τ be a non-trivial element of Gal(K(c)/K(cq)).
We have τ(c) = θc for some non-trivial root of unity θ.

Denote by τ̃ ∈ Gal(K(α)/K) an arbitrary extension of τ and set η := τ̃(α)/α. Now apply
(4.2) and its conjugate by τ̃ , taking into account that we are working in an abelian extension
of K. We obtain σ̃2(η) = θηgσ̃1(η). Hence gh(η) � 2h(η) which implies that h(η) = 0. Hence
η ∈ µ; but then τ̃ ∈ Γα by definition. However, since c ∈ Lα and since Γα fixes Lα, we have a
contradiction because θ �= 1.

The hypotheses of Proposition 3.2 are therefore fulfilled. We get the lower bound

h(c) � log(q1/d/2)
2q

.

By (4.2) and by the upper bound g < 180d log(3d) (see (4.3)) we have

h(c) � (g + 2)h(α) � 182d log(3d)h(α).

Thus

h(α) � log(q1/d/2)
364d log(3d)q

.

Proof of Theorem 1.2. Let p be a prime number such that 3d � p < 2 · 3d and let ℘ be a
prime of K over p. Let q = N℘. Then

3d � p � q � pd < 3d2+d.

Thus, by proposition 4.3, we have

h(α) >
log(3/2)

364d log(3d) · 3d2+d
� 3−d2−2d−6,

since log(3/2) � 1/3 and 364d log(3d) � 3d+5.

5. Further remarks

In this section we denote by c1, c2, c3, and c4 absolute positive constants.

(a) The ‘natural’ generalization of Lehmer’s conjecture, namely

γab(K) � c

[K : Q]

for some positive constant c, is false. Let Kn = Q(ζn) and Ln = Kn(21/n); then Ln/Kn is cyclic
and

h(21/n) =
log 2

n
.
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DOBROWOLSKI’S LOWER BOUND OVER ABELIAN EXTENSIONS Page 9 of 10

Let n(x) be the product of all primes up to x > 1 and define d(x) := [Kn(x) : Q] = ϕ(n(x)).
Then, by elementary analytic number theory, we have

n(x) � c1d(x) log log 3d(x).

Therefore

γab(Kn(x)) � log 2
c1d(x) log log 3d(x)

.

This proves the following proposition.

Proposition 5.1. We have

lim inf
[K : Q]→∞

γab(K)[K : Q] log log[K : Q] < ∞.

(b) For cyclotomic extensions of a number field K of degree d, we can deduce from the main
results of [1, 3] a lower bound for the height sharper than Theorem 1.2.

Proposition 5.2. Let ζ be a root of unity and let α ∈ K(ζ)∗ \ µ. Then

h(α) � c2(log log 5d)3

d(log 2d)4
.

Proof. By Galois’ Theory, K(ζ) is an extension of Q(ζ) of degree bounded by d. Since Q(ζ)
is an abelian extension of Q, by the refined inequality of [1] there exists an absolute constant
c2 > 0 such that

h(α) � c2(log log 5d)3

d(log 2d)4
.

(c) The example of (a) cannot be substantially improved by ‘taking roots’ in a fixed field K.

Proposition 5.3. Let K be a number field of degree d. Let α ∈ Q
∗ \ µ such that αn ∈ K

for some positive integer n. Then, if K(α)/K is abelian, we have

h(α) � c3(log log 5d)2

d(log 2d)4
.

Proof. Let µn ∩ K∗ = µr; thus r is the number of n-roots of unity contained in K. Since
K(α)/K is abelian, the extension K(α, ζn)/K is also abelian. By a theorem of Schinzel [13,
Theorem 2], there exists γ ∈ K such that

αnr = γn .

Let δ = [K : Q(ζr)] = d/ϕ(r). Since Q(ζr) is an abelian extension of Q, by the quoted result of
[1], we have

h(γ) � c2(log log 5δ)3

δ(log 2δ)4
� c2(log log 5d)3

δ(log 2d)4
.

By elementary analytic number theory, r � c4ϕ(r) log log 3ϕ(r) � c4ϕ(r) log log 5d. Thus, we
have

h(α) =
h(γ)

r
� c3(log log 5d)2

d(log 2d)4
.
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(d) The examples and results above suggest the following conjecture.

Conjecture 5.4. Let K be a number field of degree d. Then, for any ε > 0, there exists
cε > 0 having the following property. Let α ∈ Q

∗ \ µ such that K(α)/K is an abelian extension.
Then

h(α) � cεd
−1−ε.
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