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1 Introduction

Recently Rémond suggests a very general conjecture ([6], conjecture 3.4) on lower
bounds for the height in A where A is either an abelian variety of dimension n or
a power Gn

m of the multiplicative group.
Let h(·) be the (absolute, logarithmic) Weil’s height on Q. Let Γ ⊂ Q∗ be a

subgroup of finite rank k = dimQ(Γ⊗Z Q). As usual we define the division group
of Γ as

Γdiv = {g ∈ Q∗ such that ∃n ∈ Z≥1, g
n ∈ Γ} .

Let KΓ = Q(Γ) be the field of rationality of Γ. In this special setting (A = Gm),
Rémond’s conjecture reads as follows.

Conjecture 1.1 (Rémond 2011). Let α ∈ Q∗\Γdiv and put d = [KΓ(α) : KΓ].
Then:

• (strong form) There exists a positive constant cΓ such that h(α) ≥ cΓ/d.

• (weak form) For any ε > 0 there exists a positive constant cΓ(ε) such that
h(α) ≥ cΓ(ε)/d1+ε.

Two cases of conjecture 1.1 were intensively studied. Let first Γ = {1}. Thus
KΓ = Q and Γdiv is the subgroup Q∗tors of torsion points (= roots of unity). The
strong form reduces to the celebrated Lehmer’s problem, while the weak form is a
well-known theorem of Dobrowolski [3]. Remark that the case d = 1 is trivial.
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Let now Γ = {1}div = Q∗tors. Then, by Kronecker-Weber theorem, KΓ =
Qab and obviously Γdiv = Γ. The strong form reduces to the so-called “relative
Lehmer’s problem”, while the weak form is the main theorem of [2]. In this
situation, even the case d = 1 is not trivial. It reduces to the main result of [1]:

∀α ∈ (Qab)∗\Q∗tors, h(α) ≥ log 5

12
.

To our knowledge, there are no non-trivial results for subgroup of positive rank,
even if d = 1. Let us restate conjecture 1.1 in this special case.

Conjecture 1.2. Let Γ ⊂ Q∗ be a subgroup of finite rank. Then there exists a
constant cΓ > 0 such that for any α ∈ Q(Γ)∗\Γdiv we have h(α) ≥ cΓ.

The main purpose of this paper is to give some new evidence to conjecture 1.2.
Let us consider a simple example: Γ = 〈2〉div. Given a positive integer n we

denote by ζn a primitive n-th root of unity. Then conjecture 1.2 states in this
case that for any non-zero α ∈ Q(ζ2, 2

1/2, ζ3, 2
1/3, ζ4, 2

1/4, . . .) either there exists
a positive integer N such that αN ∈ 〈2〉 or h(α) ≥ c for some absolute constant
c > 0. We are not able to give a positive answer to conjecture 1.2 for Γ = 〈2〉div.
However, we can prove it for the rank 1 subgroup 〈ζ3t , 2

1/3t〉t≥1 of 〈2〉div.

Theorem 1.3. Conjecture 1.2 holds for the subgroup

Γ = 〈ζ3t , 2
1/3t〉t≥1 .

More precisely, let α be a non-zero algebraic number in the infinite extension

Q(ζ3, 2
1/3, ζ32 , 2

1/32 , ζ33 , 2
1/33 , . . .) .

Then either there exists a positive integer N such that αN ∈ 〈2〉 or

h(α) ≥ log(3/2)/18 .

Let us briefly explain why we are not able to prove conjecture 1.2 for Γ = 〈2〉div

but we can prove it for Γ = 〈ζ3t , 2
1/3t〉t≥1. All the known proofs of the weak form

of conjecture 1.1 for Γ = {1}div (even in dimension > 1, or in other settings,
for instance for abelian varieties or in a recent result by Habegger [5]) rest on
a dichotomy already present in [1]. Roughly speaking, the core of the diophan-
tine proof (the extrapolation step) consists of two metric properties. The first
one, which comes from the standard Frobenius (or, if we prefer, Fermat’s Small
Theorem) argument, works if there is no ramification. The second one is useful
if instead we have ramification. In the present situation we do not succeed to
generalize the first metric property and thus we cannot solve conjecture 1.2 even
in the said special case. However, we are able to generalize the second metric
property in some extensions which are totally ramified at some fixed primes p,
as Q(ζ3r , 2

1/3s) (r ≥ s ≥ 1) for p = 3. We hope that in the future someone
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will also be able to extend the full method of [1] to solve the height problem for
the extension Q(ζn, 2

1/n)n≥1. This would probably allow to solve conjecture 1.2
and even the weak form of conjecture 1.1 for an arbitrary subgroup Γ of finite rank.

There is nothing special in the numbers 2 and 3 which appear in theorem 1.3,
and indeed we shall prove (theorem 3.3) a lower bound for the height in the infi-
nite extension Q(ζp, b

1/p, ζp2 , b
1/p2 , ζp3 , b

1/p3 , . . .), where p is a prime number and
b ≥ 2 is an integer such that p - b and p2 - (bp−1 − 1). While the first condi-
tion is important for our method, the second one can be probably relaxed. More
generally, our method could be generalized, at the price of a deeper analysis on
the ramification in radical extensions, to get some partial results in the case of an
arbitrary subgroup of finite rank (see remark 3.4). Since we are not able to solve
conjecture 1.2 even in the special case Γ = 〈2〉div, we have preferred to avoid such
technical generalizations.

The plan of this paper is as follows. In section 2 we recall some results on higher
ramification groups of the radical extension Q(ζpr , b

1/ps) for r ≥ s ≥ 1 which have
been completely and explicitly described in Viviani’s Master Thesis [8], written
under the supervision of Dvornicich. In section 3 we prove our main result and we
discuss some possible generalizations of our method.

Acknowledgement We would like to thank Sinnou David who first draw our
attention to Conjecture 1.1. We are indebted to Gaël Rémond for thorough reading
of a preliminary version of this paper and for the reference [7]. We also thank Sara
Checcoli, Ilaria Del Corso and Roberto Dvornicich for a number of interesting and
helpful remarks.

2 Ramifications

We are concerned with lower bounds for the height in the infinite extension

Q(ζp, b
1/p, ζp2 , b

1/p2 , ζp3 , b
1/p3 , . . .)

where b ≥ 2 is an integer and p ≥ 3 is a prime which will remain both fixed for
the rest of the paper. For technical reasons, we assume p - b and p2 - (bp−1 − 1).
We remark that, under the first assumption, the second hypothesis is equivalent
to b 6∈ Qp

p.
Let r, s be integers with r ≥ s ≥ 0. We need some facts about the radical

extension
Lr,s := Q(ζpr , b

1/ps) .

We easily see that Lr,s/Q is Galois (since r ≥ s) of degree φ(pr)ps. The last
assertion is proved in [8], Corollary 2.7 if r = s. The same proof works if r > s.
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Indeed, since b 6∈ Qp
p, we have b 6∈ Qp which in turns implies b 6∈ Q(ζpr)p by

a theorem of Schinzel ([8], Proposition 2.5) and thus xp
s − b is irreducible over

Q(ζpr) by a theorem of Capelli ([8], Theorem 2.1). By standard Galois Theory

Gal(Lr,s/Q) ∼= C(ps) oG(pr) (2.1)

where C(ps) = Z/psZ and G(pr) = (Z/prZ)∗. The isomorphism is given by
σ 7→ (i, k) where i and k are uniquely determined by σ(b1/p

s
) = ζipsb

1/ps and

σ(ζpr) = ζkpr . For later reference we recall that G(pr) has a filtration given by the
subgroups G(pr)j := {k ∈ G(pr) such that k ≡ 1 mod pj} (j = 0, . . . , r). Remark
that G(pr)j is cyclic of order pr−j for j = 1, . . . , r, while G(pr)0 = G(pr).

We now recall some facts on the ramifications in the extension Lr,s/Q.

Proposition 2.1. Let r, s be integers with r ≥ s ≥ 0 and r ≥ 1. Then:

1) p is totally ramified in Lr,s. Thus pOLr,s = Qe with

e := [Lr,s : Q] = pr−1+s(p− 1) .

2) Let Gl be the last non trivial ramification group. Then

l =


2p2s−1−p+1

p+1 , if r = s;

(p−1)(p2s−1)
p+1 + p2s(pr−1−s − 1), if r > s.

3) The fixed field of Gl is

LGl
r,s =

Lr,s−1, if r = s;

Lr−1,s, if r > s.

Proof. Let for short L = Lr,s.
There is only one prime Q above p in the extension L/Q and the completion

of L with respect to Q is Qp(ζpr , b
1/ps). If r = s, this is proved in [8], Corollary

2.7. The same proof works if r > s, as we briefly show. The minimal polynomial
Xps−b of b1/p

s
over Q(ζpr) is still irreducible over Qp(ζpr) by a theorem of Schinzel

([8], Proposition 2.5), since b 6∈ Qp
p. A result of Kummer ([8], Lemma 5.1) shows

now the desired assertion.
By Theorem 5.5 of [8], the local extension Qp(ζpr , b

1/ps)/Qp is totally ramified.
This concludes the proof of 1).

For the proof of 2), see [8], Theorem 5.8. This theorem also gives

Gl
∼=

C(p), if r = s;

G(pr)r−1, if r > s
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where the two groups on the right are naturally identified with subgroups of C(ps)o
G(pr) and where the isomorphism is the restriction of (2.1). Assertion 3) easily
follows.

�

We also need the following elementary computation:

Lemma 2.2. Let r, s, e and l be as in Lemma 2.1. Then p2(l + 1) ≥ e (and
moreover p(l + 1) ≥ e if s = 0 or r ≥ s+ 2).

Proof. Let us assume first r = s. Then, according to Proposition 2.1, e =
p2s−1(p− 1) and

l + 1 =
2p2s−1 − p+ 1

p+ 1
+ 1 =

2(p2s−1 + 1)

p+ 1
.

Thus

p2(l + 1)− e =
2p2(p2s−1 + 1)− p2s−1(p2 − 1)

p+ 1
=
p2s+1 + 2p2 + p2s−1

p+ 1
> 0 .

Let now r > s. Proposition 2.1 gives e = pr−1+s(p− 1) and

l + 1 =
(p− 1)(p2s − 1)

p+ 1
+ p2s(pr−1−s − 1) + 1 = pr−1+s − 2(p2s − 1)

p+ 1
.

Thus, if s = 0 we have p(l + 1) = pr > pr−1(p− 1) = e. Similarly, if r ≥ s+ 2,

p(l + 1)− e = pr−1+s − 2p(p2s − 1)

p+ 1
≥ p2s+1 − 2p2s > 0 .

If instead s ≥ 1 and r = s+ 1 we still have

p2(l + 1)− e = (p2 − p+ 1)p2s − 2p2(p2s − 1)

p+ 1
≥ (p2 − 3p+ 1)p2s > 0 .

�

3 Metric properties and proof theorem 1.3.

Let r ≥ s ≥ 0 with r ≥ 1. Put for short L = Q(ζpr , b
1/ps) and

L0 = Q(ζpr , b
1/ps−1

), g = b1/p
s
, if r = s;

L0 = Q(ζpr−1 , b1/p
s
), g = ζpr , if r > s.

(3.1)
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Thus L = L0(g) and L/L0 is a cyclic extension of degree p− 1 or p, depending on
whether (r, s) = (1, 0) or not, with Galois group Gl (see proposition 2.1 point 3).
We choose one of its generators σ. In both cases σg/g is a non trivial p-th root of
unity.

The following lemma is the key ingredient of our proof. It generalizes the
metric property of the ramified case of the lower bound for the height in abelian
extensions ([1], lemma 2 and proposition 1). In the proof we use a simplification
due to Habegger (see [5], lemma 4.2), which allow us to avoid the use of the Strong
Approximation Theorem made in [1] (cf. lemma 1 therein).

Given a place v, we denote by | · |v the corresponding absolute value normalized
to induce on Q the underlying standard absolute value.

Lemma 3.1. Let α, g̃ ∈ Q∗ such that α/g̃ ∈ L. We assume:

1) There exists an integer n such that g̃n ∈ L0;

2) For any place v | p we have |g̃|v = 1.

Then either there exists an integer j such that α/g̃gj ∈ L0 or

h(α) ≥ log(p/2)

2p2
.

Proof. We put for short β = α/g̃ ∈ L. Let E be the Galois closure of L(α) =
L(g̃) over L0. We still denote by the same letter σ an arbitrary extension of σ to
E. We make some elementary remarks.

Remark.

i) By 1) we have σg̃ = ζg̃ for some root of unity ζ ∈ E. Thus σβ = σα/ζg̃ and

σβp
2 − βp2 =

(
σαp2 − (ζα)p

2)
/(ζg̃)p

2
.

ii) Let v be a place of E dividing p. By 2) we have |g̃|v = 1. Thus |β|v = |α|v
and, by the previous remark, |σβ|v = |σα|v and

|σβp2 − βp2 |v = |σαp2 − (ζα)p
2 |v .

Let us now go on with the proof. Assume first σβp
2

= βp
2
. Let ω := σβ/β ∈ L.

Then ω is a p2-th root of unity. Since L0 contains the p-th roots of unity, σωp = ωp

and thus σω = ηω for some p-th root of unity η ∈ L0. From σβ = ωβ and σω = ηω
we deduce that σjβ = η1+···+(j−1)ωjβ and thus β = σpβ = ωpβ which tells us that
ω is indeed a p-th root of unity. Since σg/g is a non trivial p-th root of unity,
there exists j such that ω = σgj/gj . But then σβ/β = σgj/gj which shows that
α/g̃gj = β/gj is in the subfield L0 fixed by σ, as required.
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Assume now σβp
2 6= βp

2
. By remark i) σαp2 6= (ζα)p

2
. We want to apply the

product formula to σαp2 − (ζα)p
2
.

Let v be a place of E dividing p and let w be the the restriction of v at L.
Assume for the moment β ∈ Ow the ring of integers of the completion of L at w.
By Proposition 2.1 points 1) and 2) we have pOL = Qe and σβ − β ∈ Ql+1. By
Lemma 2.2, we have p2(l + 1) ≥ e. Thus

σβp
2 − βp2 ≡ (σβ − β)p

2 ≡ 0 mod pOw

and
|σβp2 − βp2 |v ≤ p−1 .

If β 6∈ Ow we have β−1 ∈ Ow and the argument before gives |σβ−p2−β−p2 |v ≤ p−1

from which we easily deduce that

|σβp2 − βp2 |v ≤ p−1 max(1, |σβ|v)p
2

max(1, |β|v)p
2

Hence this inequality holds in both cases β ∈ Ow and β−1 ∈ Ow. By remark ii)

|σαp2 − (ζα)p
2 |v ≤ p−1 max(1, |σα|v)p

2
max(1, |α|v)p

2
.

For the other places v of E we use the trivial inequality

|σαp2 − (ζα)p
2 |v ≤ C(v) max(1, |σα|v)p

2
max(1, |α|v)p

2

with C(v) = 1 if v - ∞ and C(v) = 2 otherwise. Collecting these inequalities in
the product formula we get

0 ≤ − log p+ log 2 + p2h(σα) + p2h(α) = 2p2h(α)− log(p/2) .

Hence

h(α) ≥ log(p/2)

2p2

as required.

�

Let Γ be a subgroup of Q∗ and let α be a non-zero algebraic number. Following
Silverman (as quoted in [4]), we define the Γ-height of α as

hΓ(α) = inf{h(gα) such that g ∈ Γ} .

For Γ = {1}div this is the usual Weil height of α. Obviously, hΓ(α) = 0 if α ∈ Γ. On
the other hand we cannot hope to reverse this statement for an arbitrary subgroup.
However, for saturated (i.e. Γdiv = Γ) subgroups of finite rank, Rémond [7] proves
an explicit lower bound of the shape hΓ(α) ≥ c(Γ, [Q(α) : Q]) > 0 for α 6∈ Γ. We
state a special case (which is enough for our purposes) of his result in the following
lemma.
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Lemma 3.2. Let r, b ∈ Q∗ and n, x ∈ Z with b 6= ±1 and n ≥ 1. Let us assume
that rN 6∈ 〈b〉 for all positive integers N . Put α = rbx/n. Then

h(α) ≥ 1

3h(b)
.

Proof. For l a rational prime we denote by vl the l-adic valuation. Since b 6= ±1,
the vector v = (vl(b))l is not zero. Since rN 6∈ 〈b〉 for all positive integers N , the
vector v′ = (vl(r))l is not a rational multiple of v. Hence, v and v′ are Q-linearly
independent, i.e. there exist two (distinct) primes l1, l2 such that

vl1(r)vl2(b)− vl2(r)vl1(b) 6= 0 .

Since αn = rnbx ∈ Q, we have vl(α
n) = nvl(r) + xvl(b). Therefore

|vl1(αn)vl2(b)− vl2(αn)vl1(b)| = n|vl1(r)vl2(b)− vl2(r)vl1(b)| ≥ n .

For a ∈ Q we have |vl(a)| ≤ h(a)/ log l. Thus

n ≤ |vl1(αn)| · |vl2(b)|+ |vl2(αn)| · |vl1(b)| ≤ 2h(b)h(αn)

log l1 log l2
≤ 3nh(b)h(α) ,

since 2/(log l1 log l2) ≤ 2/(log 2 log 3) ≤ 3.

�

We can now state and prove a lower bound for the height in the infinite exten-
sion Q(ζp, b

1/p, ζp2 , b
1/p2 , ζp3 , b

1/p3 , . . .).

Theorem 3.3. Let b ≥ 2 be an integer and let p ≥ 3 be a prime number. We
assume that p - b and p2 - (bp−1 − 1). Then conjecture 1.2 holds for the subgroup

Γ = 〈ζpt , b1/p
t〉t≥1 .

More precisely, let

α ∈ Q(ζp, b
1/p, ζp2 , b

1/p2 , ζp3 , b
1/p3 , . . .)

be a non-zero algebraic number. Then either there exists a positive integer N such
that αN ∈ 〈b〉 or

h(α) ≥ min

{
1

3h(b)
,
log(p/2)

2p2

}
.

Proof. Let α be as in the statement of the theorem. Thus there exists t ≥ 0 such
that α ∈ Q(ζpt , b

1/pt). Let Λ be the set of couple (r, s) of integers with t ≥ r ≥
s ≥ 0 and such that there exists g̃ ∈ 〈ζpt , b1/p

t〉 for which α/g̃ ∈ Q(ζpr , b
1/ps). We
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remark that Λ is not empty, since (t, t) ∈ Λ. We select a minimal element (r, s) of
Λ for the standard partial order1 and we choose g̃ ∈ 〈ζpt , b1/p

t〉 such that

α/g̃ ∈ L := Q(ζpr , b
1/ps) .

If r = s = 0, then α/g̃ ∈ Q and, by lemma 3.2, either there exists a positive integer
N such that αN ∈ 〈b〉 or

h(α) ≥ 1

3h(b)
.

Thus we may assume that r ≥ 1. Let L0 and g as in (3.1):

L0 = Q(ζpr , b
1/ps−1

), g = b1/p
s
, if r = s;

L0 = Q(ζpr−1 , b1/p
s
), g = ζp

r
, if r > s.

We apply lemma 3.1. Assertions 1) and 2) of that lemma are clearly verified (the
first one since g̃p

t ∈ Q; the second one by the assumption p - b). By lemma 3.1,
either there exists an integer j such that α/g̃gj ∈ L0 or

h(α) ≥ log(p/2)

2p2

The first conclusion cannot hold. Indeed g̃gj ∈ 〈ζpt , b1/p
t〉 and, by minimality

assumption on (r, s) we deduce that α/g̃gj 6∈ L0. Thus the second conclusion of
lemma 3.1 must hold.

�

In the special case b = 2, p = 3 we have

min

{
1

3h(b)
,
log(p/2)

2p2

}
=

log(3/2)

18
.

This proves theorem 1.3.

Remark 3.4. As already remarked in the introduction, our method could in
principle be generalized to prove lower bounds for the height in some more general
situation. Let K be a number field, G be a finitely generated subgroup of K∗, and
S be a set of rational primes. We define the S-division group of G as the subgroup
Gdiv,S consisting of those g ∈ Q∗ such that there exists a positive integer n whose
prime factors are in S for which gn ∈ G. The standard definition of division group
agrees with this one taking for S the set of all primes. We also remark that, for
G = 〈2〉 and S = {3} we have Gdiv,S = 〈ζ3t , 2

1/3t〉t∈N. Let us assume that S is
finite and that |g|v = 1 for all g ∈ G and for all place v of K dividing a prime
of S. The method of this paper could potentially be extended, at the price of a
deeper analysis on the ramification in radical extensions, to prove conjecture 1.2
for Γ = Gdiv,S .

1i.e. (r, s) ≤ (r′, s′) if and only if r ≤ r′ and s ≤ s′.
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