
Appendix (by F. Amoroso)

Lower bounds for the height

VI.1 Introduction

The former Manin-Mumford conjecture predicted that the set of torsion points of a curve of genus
≥ 2 embedded in its jacobian is finite. More generally, let G be a semi-abelian variety and let V
be an irreducible1 algebraic subvariety of G, defined over some algebraically closed field K. We
say that V is a torsion variety if V is a translate of a proper subtorus by a torsion point of G.
We also denote by Vtors the set of torsion points of G lying on V . Then we have the following
generalization of the Manin-Mumford conjecture.

Theorem VI.1.1

i) If V is not a torsion variety, then the set Vtors of torsion points of G lying on V is not Zariski
dense.

ii) The Zariski closure of Vtors is a finite union of torsion varieties.

The two assertions are clearly equivalent. Theorem VI.1.1 was proved by Raynaud [31] when G
is an abelian variety, by Laurent [26] if G = Gnm, and finally by Hindry [24] in the general situation.

We assume from now on that all varieties are algebraic and defined over Q. Bogomolov [13] gave
the following generalization of the former Manin-Mumford conjecture. Let C be a curve of genus
≥ 2 embedded in its jacobian. Then C(Q) is discrete for the metric induced by the Néron-Tate
height. In other words, Bogomolov conjectures that the set of points of “sufficiently small” height
on C is finite, while the former Manin-Mumford conjecture makes a similar assertion on the set of
torsion points (which are precisely the points of height zero).

More generally, let G be a semi-abelian variety and let ĥ be a normalized height on G(Q).

Hence, ĥ is the Neron-Tate height if G is abelian, and it is the Weil height if G = Gnm ↪→ Pn. In

particular, ĥ is a non-negative function on G, and ĥ(P ) = 0 if and only if P is a torsion point.
Given an algebraic subvariety of G, we denote by V ∗ the complement in V of the Zariski closure
of the set of torsion points of V . Therefore, by theorem VI.1.1, V \V ∗ = Vtors is a finite union of
torsion varieties.

Theorem VI.1.2 Let V be an irreducible subvariety of a semi-abelian variety G. Then:

i) If V is not a torsion variety, then there exists θ > 0 such that the set V (θ) = {P ∈
V s.t. ĥ(P ) ≤ θ} is not Zariski dense in V .

ii) V ∗ is discrete for the metric induced by ĥ, i.e.

inf{ĥ(P ) s.t. P ∈ V ∗} > 0.

1By irreducible we mean geometrically irreducible
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It is easy to see that the two assertions are equivalent. In this formulation, theorem VI.1.2
was proved for G = Gnm by Zhang (see [37]). In the abelian case, Ullmo (see [35]) proved Bogo-
molov’s original formulation for curves (dim(V ) = 1); immediately after Zhang (see [38]) proved
theorem VI.1.2. The semi-abelian case was solved by David and Philippon (see [21]).

In this appendix we shall describe some quantitative versions of theorem VI.1.2 for a torus
G = Gnm, and we sketch proofs of theorems which prove these conjectures “up to an ε”.

VI.2 Algebraic numbers.

In this section we first recall some facts from sections 2.1, 2.2 and 2.3, of Chapter III.
Let α ∈ Q and let K be any number field containing α. We denote byMK the set of places of

K. For v ∈ K, let Kv be the completion of K at v and let | · |v be the (normalized) absolute value
of the place v. Hence

|α|v = |σα|,

if v is an archimedean place associated to the embedding σ : K ↪→ Q. Note that two conjugate
embeddings define the same place. If v is a non archimedean place associated with the prime ideal
℘ over the rational prime p, we have

|α|v = p−λ/e,

where e is the ramification index of ℘ and λ is the exponent of ℘ in the factorization of the ideal

(α) in the ring of integers of K. Thus ‖α‖v = |α|[Kv:Qv]
v , in the notation of Chapter III, section

2.1. Our normalization agrees with the product formula∏
v∈MK

|α|[Kv :Qv ]
v = 1

which holds for any α ∈ K∗.
For further reference, we recall that for any rational place w (thus w = ∞ or w = a prime

number), ∑
v|w

[Kv : Qv] = [K : Q].

We define the Weil height of α by

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α|v, 1}.

It is easy to see that this definition does not depend on the field K containing α; it thus defines a
function h : Q→ R+.

The Weil height of an algebraic number is related to the Mahler measure of a polynomial. Let
P ∈ C[x] be non-zero; then its Mahler measure is

M(P ) = exp

∫ 1

0

log |P
(
e2πit

)
|dt.

We also agree that M(0) = 0. The Mahler measure has some nice properties. It is a multiplicative
function, and it is invariant by the morphism P (x) → P (xl) (l ∈ N). Let α1, . . . , αd be the roots
of P and let Pd be its leading coefficient. By Proposition III.2.5,

M(P ) = |Pd|
d∏
j=1

max{|αj |, 1}. (VI.2.1)
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Let K be a number field, and let f ∈ K[x]. We define:

ĥ(f) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] logMv(f),

where Mv(f) is the maximum of the v-adic absolute values of the coefficients of f if v is non
archimedean, and Mv(f) is the Mahler measure of σf if v is an archimedean place associated with
the embedding σ : K ↪→ Q. As for the Weil height, this definition does not depend on the field K
containing the coefficients of f . Moreover, by the product formula, ĥ(λf) = ĥ(f) for any λ ∈ K∗.
We also remark that ĥ is an additive function. Indeed, Mv(∗) is a multiplicative function at least
for v | ∞. By a simple exercise this property still holds for v - ∞. By the above properties and

by (VI.2.1), ĥ(f) is the sum of the Weil height of its roots. As a special case

h(α) =
logM(f)

[Q(α) : Q]
. (VI.2.2)

where f ∈ Z[x] is the minimal polynomial of α over Z (i.e. f is irreducible in Z[x], f(α) = 0 and
its leading coefficient is positive).

Let ‖P‖1 be the sum of the absolute values of the coefficients of P ∈ C[x] (the “length” of P ).
Since the maximum of |P | on the unit disk is bounded by ‖P‖1, we have M(P ) ≤ ‖P‖1. Moreover,

‖P‖1 ≤ 2deg(P )M(P ). (VI.2.3)

This follows from (VI.2.1) and from the usual formulas for the coefficients of a polynomial as
symmetric functions of its roots. Inequality (VI.2.3) implies a theorem of Northcott: the set of
algebraic numbers of bounded height and degree is finite. If h(α) ≤ B, by the above inequality
the coefficients of the minimal polynomial of α are bounded by 2[Q(α):Q]B. Thus the minimal
polynomials of the algebraic numbers of bounded height and degree belong to a finite set.

We now state some other important properties of the height. Let α, β ∈ Q∗. Then h(αβ) ≤
h(α) + h(β). This follows from the inequality max{xy, 1} ≤ max{x, 1}max{y, 1} (for x, y > 0)
applied at each place. Moreover, if β is a root of unity, h(αβ) = h(α). Indeed roots of unity have
absolute value 1 at each place. Let α ∈ Q and n ∈ Z. Then h(αn) = |n|h(α). If n ≥ 0, this is
obvious from the definition, while, if n < 0, this follows from the fact that h(α−1) = h(α), by the
product formula.

This last property implies that h(α) = 0 if and only if α is a root of unity. This is a theorem
of Kronecker, and it is precisely the simplest case of Zhang’s theorem on the Bogomolov toric
conjecture. The problem of finding sharp lower bounds for the height of a non-zero algebraic
number α which is not a root of unity is a famous problem of Lehmer. Let f ∈ Z[x] be a nonconstant
irreducible polynomial. Assume that f 6= ±x and that ±f is not a cyclotomic polynomial. Lehmer
(see [27]) asks whether there exists an absolute constant C > 1 such that M(f) ≥ C. An equivalent
formulation in terms of the height is the following. Let α be a non-zero algebraic number of degree
d which is not a root of unity. Then Lehmer’s conjecture may be stated as follows: there exists an
absolute constant c > 0 such that

h(α) ≥ c

d
.

This should be the best possible lower bound for the height (without any further assumption on
α), since h(21/d) = (log 2)/d. The best known result in the direction of Lehmer’s conjecture is the
following theorem.

Theorem VI.2.1 (Dobrowolski, 1979) For any algebraic number α ∈ Q∗ of degree d ≥ 2 which
is not a root of unity we have

h(α) ≥ c

d

(
log d

log log d

)−3

for some absolute constant c > 0.

In the original statement [22] c = 1/1200; later Voutier [36] shows that one can take c = 1/4.
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VI.2.1 Sketch of the proof of theorem VI.2.1

We may assume that α is an algebraic integer, otherwise h(α) ≥ (log 2)/d. Let f be its minimal
polynomial over Z and let p be a prime number. Then, by Fermat’s little theorem,

f(x)p ≡ f(xp) mod pZ[x].

Thus

|f(αp)|v ≤ p−1

for any v | p. Let F ∈ Z[x] be a polynomial of degree L vanishing on α with multiplicity ≥ T for
some parameters L and T with L ≥ dT . Then

|F (αp)|v ≤ p−T

for any v | p. Moreover |F (αp)|v ≤ 1 for v -∞ and

|F (αp)|v ≤ ‖F‖1 max(1, |α|v)pL

if v | ∞. Assume that

F (αp) 6= 0. (VI.2.4)

Then, by the product formula,

0 =
∑
v

[Kv : Qv]
[K : Q]

log |F (αp)|v

≤
∑
v|p

[Kv : Qv]
[K : Q]

log |F (αp)|v +
∑
v|∞

[Kv : Qv]
[K : Q]

log |F (αp)|v

≤ −
∑
v|p

[Kv : Qv]
[K : Q]

T log p+
∑
v|∞

[Kv : Qv]
[K : Q]

(log ‖F‖1 + pL log+ |α|v)

≤ −T log p+ log ‖F‖1 + pLh(α).

This yields

h(α) ≥ T log p− log ‖F‖1
pL

. (VI.2.5)

We choose L = d, T = 1 and F = f . The non vanishing condition (VI.2.4) is satisfied. Indeed,
if α is not a root of unity, then αp is not a conjugate of α, otherwise ph(α) = h(αp) = h(α) and α
would be a root of unity. Thus we obtain

h(α) ≥ log p− log ‖f‖1
pd

.

Unfortunately, log ‖f‖1 can be as large as a power of d, even if the height of α is very small (see [1]).
Thus, to get a positive lower bound, we must choose p to be exponential in dc, and the argument
terminates with a poor lower bound of the shape h(α) ≥ e−dc .

The use of Siegel’s Lemma [15], a classical tool in diophantine approximation, improves enor-
mously the quality of this bound. Using this lemma, we find a non-zero polynomial F ∈ Z[x]
(“auxiliary function”) of degree ≤ L vanishing on α with multiplicity ≥ T as required and such
that

log ‖F‖∞ ≤
dT

L+ 1− dT
(T log(L+ 1) + Lh(α)). (VI.2.6)

Here ‖F‖∞ denotes the maximum of the absolute values of the coefficients of F .



VI.2. ALGEBRAIC NUMBERS. 5

The proof now follows the scheme of a classical transcendence proof: choice of the auxiliary
function, extrapolation and zero’s lemma. During the proof we assume that the height of α is
pathologically small and we argue for a contradiction.

Let A and B positive real functions of d. We write A � B if and only if A ≤ cB for some
c > 0, and A ≈ B if both A� B and B � A. We shall also denote by c1, . . . , c4 positive constants.

• Choice of the auxiliary function. Since log ‖F‖1 ≤ (L+ 1) log ‖F‖∞, by (VI.2.6) we have

log ‖F‖1 ≤ log(L+ 1) +
dT

L+ 1− dT
(T log(L+ 1) + Lh(α)) .

This inequality cannot give anything better than log ‖F‖1 � log(L+1). Therefore, it is reasonable
to choose L and T in such a way that

dT 2

L+ 1− dT
≈ 1,

say L = dT 2, and to assume Lh(α) ≤ T log(L + 1). Under these assumptions, the length of the
auxiliary polynomial satisfies

log ‖F‖1 � log(L+ 1) ≤ log(dT 2).

• Zero’s lemma. In order to apply (VI.2.5), we need a prime p such that F (αp) 6= 0. We fix a
third parameter N and we assume F (αp) = 0 for any prime p with N ≤ p ≤ 2N . Since F ∈ Z[x],
then F vanishes also in the conjugates of αp. Since α is not a root of unity, αp1 and αp2 are not
conjugate for primes p1 6= p2, since otherwise p1h(α) = p2h(α) and α would be a root of unity.
Assume

[Q(αn) : Q] = d (VI.2.7)

for all integer n. Then the set of the conjugate of αp with p prime, N ≤ p ≤ 2N , has cardi-
nality dπ(N) with π is as usual the prime-counting function. By Chebyshev Theorem, π(N) ≥
c1N/ logN . Since a polynomial as at most as many zero as its degree,

L ≤ c1dN

logN
.

We choose the smallest N such that this equality is not satisfied. Thus N ≈ L
d log(L/d). By the

choice L = dT 2,
N ≈ T 2 log T.

• Conclusion. By the remarks above, there exists a prime p ∈ [N, 2N ] such that F (αp) 6= 0.
By (VI.2.5), by our choices L = dT 2, N ≈ T 2 log T , and by the bound log ‖F‖1 � log(L + 1) ≤
log(dT 2) on the length of the auxiliary polynomial,

h(α) ≥ c2T log T − c3 log(dT 2)

dT 4 log T
.

Again, this inequality cannot give anything better than h(α) ≥ c2T log T
dT 4 log T = c2

dT 3 . It is thus reason-

able to choose the smallest T such that c2T log T ≥ 2c3 log(dT 2), that is

T ≈ log d

log log d
.

This gives

h(α) ≥ c2
2dT 3

≥ c4
d

(
log d

log log d

)−3

.

Note that if our working assumption Lh(α) ≤ T log(L+ 1) is not satisfied, we get the bound:

h(α) ≥ T

L
log(L+ 1) =

log(dT 2 + 1)

dT
≈ log log d

d
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which is even better than Lehmer!
Dobrowolski’s theorem is proved under the additional assumption (VI.2.7). In the general case

we proceed by induction on d. It is useful to replace the reminder term by the decreasing function

d 7→ ε(d) :=

(
log 5d

log log 3d

)−3

.

Let α be an algebraic number of degree d ≥ 1 and assume

d′h(β) ≥ ε(d′)

for all algebraic numbers β ∈ Q∗ different from a root of unity and with d′ = [Q(β) : Q] < d. From
the first part of the proof (and if c is sufficiently large), we can assume that for some n > 1 (VI.2.7)
does not hold. We follow an argument of [32]. We have k = [Q(α) : Q(αn)] > 1. Let β be the
norm of α from Q(α) to Q(αn). Then β = ζαk for some root of unity ζ and h(β) = h(αk) = kh(α).
Since d′ = [Q(β) : Q] < d and since t 7→ ε(t) decreases,

dh(α) = [Q(αn) : Q]h(β) ≥ d′h(β) ≥ cε(d′) ≥ cε(d).

�

VI.2.2 Height in abelian extensions

In some special cases, not only Lehmer’s conjecture is true, but it can also be sharpened. Assume
for instance that L is a totally real number field or a CM field (a totally complex quadratic extension
of a totally real number field). Then, as a special case of a more general result, Schinzel proved
that

h(α) ≥ 1

2
log

1 +
√

5

2
= 0.2406...

if α ∈ L∗ and |α| 6= 1. In particular, by Kronecker’s theorem, this inequality holds if α is an
algebraic integer different from zero and from a root of unity. It may happen that algebraic
numbers of absolute value 1 in CM fields have arbitrary small Weil height. Let for instance
α = (

√
2 − i)/(

√
2 + i). Then all the algebraic conjugates of α have absolute value 1. Thus, the

same property holds for the algebraic conjugates of α1/d, where d is an arbitrary positive integer.
In turns, this implies that Q(α1/d) is a CM field. Nevertheless, we have 0 < h(α1/d) = h(α)/d→ 0
as d 7→ ∞.

When the extension L/Q is an imaginary Galois extension, L is CM if and only if the complex
conjugation lies in the center of the Galois group. Assume further that L/Q is abelian. In [8] we
prove

Theorem VI.2.2 (A. – Dvornicich, 2000) Let L/Q be an abelian extension, and let α ∈ L∗,
α not a root of unity. Then

h(α) ≥ log 5

12
= 0.1341...

The above lower bound is not far from the best possible one. Let L be the 21-th cyclotomic
field. We recall that L is one of the 29 cyclotomic fields with class number one. The prime 7 splits
as (PP )6 in the ring of integer of L and P is a prime ideal of norm 7. Let γ be a generator of P
and define α = γ/γ. Then

|α|[Lv:Qv]
v =


7−1, if v is over P ;

7, if v is over P ;

1, otherwise.

Thus

h(α) =
log 7

12
.
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This example shows that numbers of small height in an abelian extension are closely related to
the class number problem. We can reverse the above construction and use lower bounds for the
height to obtain informations on the size of the ideal class group of some fields. For instance, let Lm
be the m-th cyclotomic field, and define em to be the exponent of its class group, i.e. the smallest
positive integer e such that Ie is a principal ideal for all integral ideals I of Lm. By Linnik’s
theorem, there exists an absolute constant c > 0 and a prime p ≤ mc which splits completely in
Lm. Let P be a prime ideal of Lm over p; by definition P em = (γ) for some integer γ ∈ Lm. Define
α = γ/γ. The above argument shows that

h(α) =
em log p

[Lm : Q]
≤ emc logm

ϕ(m)
,

where ϕ(·) is the Euler function. Since Lm/Q is abelian,

log 5

12
≤ h(α) ≤ emc logm

ϕ(m)
.

We obtain:

em ≥
log 5

12c
× ϕ(m)

logm
.

Let K be a CM field of discriminant ∆ and degree d. We assume the Generalized Riemann
Hypothesis for the Dedekind zeta function of K. More sophisticated argument show (see [9]) that
for any ε > 0 the exponent eK of the class group of K satisfies:

eK ≥ max

{
C log |∆|
d log log |∆|

, C(ε)d1−ε
}
,

where C and C(ε) are positive constants. Thus the exponent of the class group of a CM field goes
to infinity with its discriminant.

We can “mix” the lower bound in abelian extensions (theorem VI.2.2) with Dobrowolski’s result,
theorem VI.2.1. Let K be a fixed number field, and let L/K be an abelian extension. In [11], we
prove that for α ∈ L∗ not a root of unity,

h(α) ≥ c(K)

D

(
log 2D

log log 5D

)−13

, (VI.2.8)

where D = [L(α) : L] and where c(K) > 0. In the proof of [11], c(K) depended on both the degree
and the discriminant of K.

We come back to the lower bounds for the height on an abelian extension L of a number field
K. As a very special case of (VI.2.8), the height in L∗, outside the set of roots of unity, is bounded
from below by a positive function depending only on K. The following question arises: is it true
that we can choose a function depending only on the degree [K : Q]? In [12] we gave a positive
answer to this problem. Let L/K be as before. Then for any α ∈ L∗ which is not a root of unity,
we have

h(α) > 3−d
2−2d−6

where d = [K : Q]. This result has some amusing consequences. For instance, let L be a dihedral
extension of the rational field of degree 2n, say. Then L is an abelian extension of its quadratic
subfield K fixed by the normal cyclic group of order n. Thus for any α ∈ L∗ which is not a root
of unity we have

h(α) ≥ 3−14.
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VI.2.3 Sketch of the proof of theorem VI.2.2

For a natural numberm ≥ 3 we denote by ζm a primitivem th-root of unity, and we let Lm = Q(ζm)
be the m-th cyclotomic field. We need two lemmas. Let p ≥ 3 be a prime number, and let α ∈ L∗m,
α not a root of unity. We show that

h(α) ≥ log(p/2)

2p
.

Choosing p = 5 , this gives, via Kronecker-Weber’s theorem, the lower bound

h(α) ≥ log(5/2)

10

for the height of a non-zero algebraic number α (α not a root of unity) lying in an abelian exten-
sion. A refinement of the proof gives the more precise result of theorem VI.2.2.

The following simple lemma is the key argument in the proof.

Lemma VI.2.3 Let p be a rational prime. Then there exists σ = σp ∈ Gal(Lm/Q) with the
following two properties.

i) If p - m, then

p | (γp − σγ)

for any integer γ ∈ Lm.

ii) If p | m, then

p | (γp − σγp)

for any integer γ ∈ Lm. Moreover, if σγp = γp for some γ ∈ Lm, then there exists a root of
unity ζ ∈ Lm such that ζγ is contained in a proper cyclotomic subextension of Lm.

Proof. Assume first that p - m. Let σ ∈ Gal(Lm/Q) be the Frobenius automorphism defined by
σζm = ζpm. For any integer γ ∈ Lm, we have γ = f(ζm) for some f ∈ Z[x]. Hence

γp ≡ f(ζpm) ≡ f(σζm) ≡ σγ (mod p).

Assume now that p|m. The Galois group Gal(Lm/Km/p) is cyclic of order k = p or k = p− 1
depending on whether p2|m or not. Let σ be one of its generators; hence σζm = ζpζm for some
primitive p-th root of unity ζp. For any integer γ = f(ζm) ∈ Z[ζm], we have

γp ≡ f(ζpm) ≡ f(σζpm) ≡ σγp (mod p).

Suppose finally that σγp = γp: then σγ = ζup γ for some integer u. It follows that σ(γ/ζum) = γ/ζum,
hence γ/ζum belongs to the fixed field Km/p, as desired.

�

Let L = Lm, and let σ = σp be the homomorphism given by lemma VI.2.3. Assume first that
p - m. Let v be a place of L dividing p (thus |p|v = 1/p). By the “strong approximation theorem”
(see for instance [17], Chapter II, § 15, page 67), we see easily that there exists an algebraic integer
β = βv ∈ L such that αβ is integer and

|β|v = max{1, |α|v}−1.

Then

|(αβ)p − σ(αβ)|v ≤ p−1 and |βp − σβ|v ≤ p−1.



VI.2. ALGEBRAIC NUMBERS. 9

Using the ultrametric inequality, we deduce that

|αp − σα|v = |β|−pv |(αβ)p − σ(αβ) + (σβ − βp)σα|v
≤ |β|−pv max

(
|(αβ)p − σ(αβ)|v, |βp − σβ|v|σα|v

)
≤ p−1 max(1, |α|v)p max(1, |σα|v).

Suppose now that v is a finite place not dividing p. Then we have

|αp − σ(α)|v ≤ max(1, |α|v)p max(1, |σ(α)|v) .

Finally, if v|∞,

|αp − σ(α)|v ≤ 2 max(1, |α|v)p max(1, |σ(α)|v) .

Moreover αp 6= σα, since α is not a root of unity. We now apply the product formula to γ = αp−σα,
using ∑

v|p

[Lv : Qv] =
∑
v|∞

[Lv : Qv] = [L : Q].

We get

0 =
∑
v-∞
v-p

[Lv : Qv]
[L : Q]

log |γ|v +
∑
v|p

[Lv : Qv]
[L : Q]

log |γ|v +
∑
v|∞

[Lv : Qv]
[L : Q]

log |γ|v

≤
∑
v

[Lv : Qv]
[L : Q]

(p log+ |α|v + log+ |σα|v)−
∑
v|p

[Lv : Qv]
[L : Q]

log p+
∑
v|∞

[Lv : Qv]
[L : Q]

log 2

= ph(α) + h(σα)− log p+ log 2

= (p+ 1)h(α)− log(p/2).

Therefore,

h(α) ≥ log(p/2)

p+ 1
≥ log(p/2)

2p
.

Assume now that p | m. Let v be a place of L dividing p and let β = βv ∈ L as in the first part of
the proof. Then

|(αβ)p − σ(αβ)p|v ≤ p−1 and |βp − σβp|v ≤ p−1.

Using the ultrametric inequality, we find

|αp − σαp|v = |β|−pv |(αβ)p − σ(αβ)p + (σβp − βp)σαp|v
≤ p−1 max(1, |α|v)p max(1, |σα|v)p.

Moreover, we can assume αp 6= σαp. Otherwise, by lemma VI.2.3, there would exist a root of unity
ζ ∈ L such that ζα is contained in a proper cyclotomic subextension of L; hence h(α) = h(ζα)

and, by induction, h(ζα) ≥ log(p/2)
2p . Applying the product formula to γ = αp − σαp as in the first

part of the proof, we get

0 ≤ ph(α) + ph(σα)− log p+ log 2 = 2ph(α)− log(p/2).

Again

h(α) ≥ log(p/2)

2p
.

�
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VI.3 Subvarieties of Gn
m.

We consider a torus Gnm, and we fix the “standard embedding” ι : Gnm ↪→ Pn,

ι(x1, . . . , xn) = (1 : x1 : · · · : xn).

By a subvariety of Gnm we mean an algebraic subvariety V defined over some number field K.
The degree of V is the degree of its Zariski closure in Pn. We shall say that V is irreducible if
its Zariski closure is geometrically irreducible. Similarly, we say that V is irreducible over K if its
Zariski closure is irreducible over K.

We recall some definitions from chapter IV, section 2.2. Given λ ∈ Zn and x = (x1, . . . , xn)
we set xλ = xλ1

1 · · ·xλnn . Given any m-tuple of vectors λ1, . . . ,λm ∈ Zn we define a regular map
ϕ : Gnm → Gmm by ϕ(x) := (xλ1 , . . . ,xλm). This map is an algebraic group homomorphism, called
monoidal. When m = n, the homomorphism ϕ is invertible if and only if det(λ1, . . . ,λm) = ±1;
in this case it is called a monoidal automorphism of Gnm. If det(λ1, . . . ,λm) 6= 0 the kernel of ϕ is
finite; we shall say that ϕ is finite. We shall often use a special finite monoidal morphism. Let l ∈ N.
We denote by [l] : Gnm → Gnm the “multiplication” by [l], i.e. the morphism x 7→ xl = (xl1, . . . , x

l
n).

Thus the kernel Ker[l] is the set of l-torsion points. It is a subgroup isomorphic to (Z/lZ)n.
By algebraic subgroup of Gnm we mean a closed algebraic subvariety stable under the group

operations. An irreducible algebraic subgroup is called a torus. Any algebraic subgroup is a
finite disjoint union of translates of a torus. Given an algebraic subgroup H we denote by H0 its
connected component containing the neutral element. Let Λ ⊆ Zn be a subgroup. Then

HΛ = {x ∈ Gnm, ∀λ ∈ Λ, xλ = 1}

is an algebraic group. Moreover, Λ 7→ HΛ is a bijection between subgroups of Zn and algebraic
subgroups of Gnm.

Let V be an irreducible subvariety of Gnm. We define its stabilizer to be

Stab(V ) = {α ∈ Gnm s.t. αV = V }.

Thus

Stab(V ) =
⋂
x∈V

x−1V.

This shows that Stab(V ) is an algebraic subgroup of dimension ≤ dim(V ). We remark that equal-
ity of the dimensions holds if and only if V is a translate of a torus.

Let l be a positive integer. We are interested in relations between the degree of V and the
degrees of [l]−1V = {α ∈ Gnm s.t. αl ∈ V } and of [l]V = {αl s.t. α ∈ V }.

Proposition VI.3.1 We have

deg([l]−1V ) = lcodim(V ) deg(V )

and

deg([l]V ) =
ldim(V ) deg(V )

|Ker[l] ∩ Stab(V )|
. (VI.3.9)

Proof. This is a special case of a general result of [24]. We give a sketch of the proof. Let us
prove the first formula. For a hypersurface, this statement is clear. Indeed, let f be an equation of
V . Then f(xl) is an equation of [l]−1V . We consider the general case. Let d be the dimension of V
and let W1, . . . ,Wd be generic hypersurfaces of degree D1, . . . , Dd such that X = V ∩W1∩· · ·∩Wd

is a finite set of deg(V )D1 · · ·Dd points. Then [l]−1X = [l]−1V ∩ [l]−1W1 ∩ · · · ∩ [l]−1Wd is a set
of cardinality ln|X|. On the other hand, for what we have seen for hypersurfaces, this set has
cardinality deg([l]−1V )ldD1 · · ·Dd. Thus deg([l]−1V ) = ln−d deg(V ) as required.
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The equality (VI.3.9) follows from the previous one. Indeed [l]−1[l]V = Ker[l]V and Ker[l]V is
a union of

ln

|Ker[l] ∩ Stab(V )|
distinct components. Thus

lcodim(V ) deg([l]V ) = deg([l]−1[l]V ) =
ln deg([l]V )

|Ker[l] ∩ Stab(V )|
.

�

VI.3.1 Heights of subvarieties

Let α = (α0 : · · · : αn) ∈ Pn(K) and let K be any number field containing α0, . . . , αn. We define
the Weil height of α by:

h(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α0|v, . . . , |αn|v}.

As for the height of algebraic numbers, this definition does not depend on the number field K;
moreover, by the product formula, it does not depend on the projective coordinates of α.

This provides a height function ĥ(x1, . . . , xn) = h(1 : x1 : · · · : xn) on Gnm(Q). The following
properties hold:

i) the function ĥ is a positive function on Gnm(Q), vanishing only on its torsion points;

ii) ĥ(αβ) ≤ ĥ(α) + ĥ(β). Moreover, if ζ is a torsion point, ĥ(ζα) = ĥ(α). If n ∈ N then

ĥ(αn) = nĥ(α);

iii) a subset of Gnm(Q) of bounded height and bounded degree is finite (Northcott’s theorem)

The proofs are similar to those in dimension 1.

On hypersurfaces we have a “natural” definition of height rising from an extension of the Mahler
measure to polynomials in several variables. Let P ∈ C[x±1

1 , . . . , x±1
n ]; we define its Mahler measure

as:

M(P ) = exp

∫ 1

0

· · ·
∫ 1

0

log |P
(
e2πit1 , . . . , e2πitn

)
|dt1 . . . dtn

and we make the convention M(0) = 0. As in dimension 1, the Mahler measure is a multiplicative
function. Moreover, if ϕ(x) = (xλ1 , . . . ,xλm) is a finite monoidal morphism, then M(P (x)) =
M(P (xλ)). Let K be a number field and let f ∈ K[x] be a polynomial. We define

ĥ(f) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] logMv(f),

where Mv(f) is the maximum of the v-adic absolute values of the coefficients of f if v is non
archimedean, and Mv(f) is the Mahler measure of σf if v is an archimedean place associated with
the embedding σ : K ↪→ Q. As for the Weil height, this definition does not depend on the field K
containing the coefficients of f and ĥ defines a positive and additive function on Q[x]. Let

V = {α ∈ Gnm s.t. f(α) = 0}

be a hypersurface in Gnm defined by some square-free polynomial f ∈ K[x]. We define the normal-
ized height of V as

ĥ(V ) = ĥ(f).
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This definition does not depend on the equation we choose for V . Let ϕ : Gnm → Gnm be a finite

monoidal morphism. We also remark that ĥ(ϕ−1(V )) = ĥ(V ).
Following Schinzel, we say that an irreducible f ∈ Z[x] is an extended cyclotomic polynomial if

there exist a cyclotomic polynomial φ and λ, µ ∈ Zn such that

f(x) = ±xλφ(xµ) .

In other words, an irreducible polynomial f ∈ Z[x] is extended cyclotomic if and only if the
hypersurface {f = 0} in Gnm is a union of torsion varieties. In this context, Zhang’s theorem on
the toric Bogomolov conjecture can be paraphrased as follows. Let f ∈ Z[x] be irreducible. Then
M(f) = 1 if and only if f = ±xj or if f is an extended cyclotomic polynomial. This result was
proved earlier in [14], [25] and [34] independently.

The normalized height of an irreducible hypersurface has a nice behaviour under the action of
pull back and pull out by multiplication by [l]. Indeed

ĥ([l]−1V ) = ĥ(V )

and

ĥ([l]V ) =
lnĥ(V )

|Ker[l] ∩ Stab(V )|
.

The first equality is a special case of the invariance of ĥ(V ) under inverse image by finite monoidal

morphisms. The second equality follows from the first one and from the additivity of ĥ, exactly as
the corresponding formulas for the degree.

The normalized height of a hypersurface can be computed as a limit. Let f ∈ C[x]. From
inequality (VI.2.3) we deduce by induction on n (see [28] for details)

‖f‖1 ≤ 2d1+···+dnM(f),

where d1, . . . , dn are the partial degrees of f . Let ‖ · ‖ be any norm on C[x] such that

log ‖f‖ = log ‖f‖1 +O(deg f) (VI.3.10)

We define a height on hypersurfaces of Gnm by choosing the norm ‖ · ‖ at the archimedean places.
Let as before

V = {α ∈ Gnm s.t. f(α) = 0}

be a hypersurface in Gnm defined by some square-free polynomial f ∈ K[x]. Let us define

h(V ) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] logHv(f),

where Hv(f) = Mv(f) if v is non archimedean, and Hv(f) = ‖σf‖ if v is an archimedean place
associated with the embedding σ : K ↪→ Q. Then,

ĥ(V ) = h(V ) +O(deg(V )). (VI.3.11)

Let l be a positive integer. Using the relations between degrees and heights of V and [l]V we see
that

ĥ(V ) =
ĥ([l]V ) deg(V )

l deg([l]V )
.

Thus, replacing in (VI.3.11) V by [l]V ,

ĥ(V ) =
h([l]V ) deg(V )

l deg([l]V )
+O(l−1 deg(V )).
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This shows

lim
l 7→∞

h([l]V ) deg(V )

l deg([l]V )
= ĥ(V ).

The last formula suggests a “simple” definition of normalized height on subvarieties of Gnm,
due to Philippon [30]. We start by choosing a height on subvarieties. Let V be a d dimensional
irreducible subvariety and let F be the Chow form of its Zariski closure in Pn. The Chow form is
an irreducible multihomogeneous polynomial F (u1

0, . . . , u
1
n, . . . , u

d+1
0 , . . . , ud+1

n ) vanishing precisely
if the intersection of V with the linear space

{x ∈ Pn s.t. u1
0x0 + · · ·+ u1

nxn = · · · = ud+1
0 x0 + · · ·+ ud+1

n xn = 0}

is non empty. We define a height h(V ) as the height of the hypersurface in G(d−1)n
m defined

by {F = 0}, where one choose any reasonable norm at the archimedean places (i.e. a norm
satisfying (VI.3.10)). David and Philippon (see [20]) prove that the limit

ĥ(V ) = lim
l→+∞

h([l]V ) deg(V )

l deg([l]V )

exists. We can see (compute the Chow form) that this definition of normalized height specializes
to the previous ones if V is a point or if V is a hypersurface (see [20]). Moreover:

i) the function ĥ(·) is non-negative;

ii) for every l ∈ N we have

ĥ([l]−1V ) = lcodim(V )−1ĥ(V )

and

ĥ([l]V ) =
ldim(V )+1ĥ(V )

|Ker[l] ∩ Stab(V )|
.

iii) for every torsion point ζ we have ĥ(ζV ) = ĥ(V ).

For further details on the construction of the normalized height on tori and abelian varieties,
see [30].

VI.3.2 Small height problems

Using properties ii) and iii) of the normalized height, we see that a torsion variety V = ζH

has height zero. Indeed, if ζ is a torsion point and H is a subtorus, then ĥ(ζH) = ĥ(H) and

ĥ(H) = ĥ([l]H) = lĥ(H) for any l ∈ N (since H = [l]H and |Ker[l] ∩H| = ldim(H)).
Are torsion varieties the only varieties of zero height? The answer is positive; more precisely,

this question is equivalent to the multiplicative analogue of the former Bogomolov’s conjecture.
Let us define, for θ > 0,

V (θ) = {α ∈ V s.t. ĥ(α) ≤ θ}

and let µ̂ess(V ) (“essential minimum”) be the infimum of the set of θ > 0 such that V (θ) is Zariski
dense in V . Theorem VI.1.2 asserts that µ̂ess(V ) = 0 if and only if V is torsion. By a special case
of an inequality of Zhang (see [37], theorem 5.2.), we have, for an irreducible V ,

µ̂ess(V ) ≤ ĥ(V )

deg(V )
≤ (dim(V ) + 1)µ̂ess(V ). (VI.3.12)

This inequality shows that ĥ(V ) = 0 if and only if µ̂ess(V ) = 0. The problem of finding sharp lower
bounds for µ̂ess(V ) for non-torsion subvarieties of Gnm is a generalization of Lehmer’s problem.
Lower bounds for the essential minimum of a non-torsion subvariety will depend on some geomet-
ric invariants of V , for instance its degree. Moreover, if we do not make any further geometric
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assumption on the variety, such a bound must also depend on its field of definition (“arithmetic
case”). Indeed, let H be a proper subtorus of Gnm and let αn be a sequence of non-torsion points
whose height tends to zero (for instance, αn = (21/n, . . . , 21/n)). Then, the varieties Vn = Hαn
have fixed degree deg(H) and essential minimum µ̂ess(Vn) ≤ ĥ(αn) → 0. In spite of that, if we
further assume that V is not a translate of a proper subtorus (even by a point of infinite order),
then Bombieri and Zannier [16] proved that the essential minimum of V can be bounded from
below only in terms of the degree of V (“geometric case”).

As an exercice, we remark that this result of Bombieri and Zannier gives an alternative proof
of Schinzel’s result stated in section VI.2.2. Let L be a CM field and let α ∈ L∗ such that |α| 6= 1.
We consider the curve C ⊆ G2

m defined by the equation

f(x, y) = (x− α)y − (αx− 1).

Since α 6= α−1 this curve is irreducible. Moreover, it is easy to see that C is not a translate of a
subgroup. By the quoted result of Bombieri and Zannier, ĥ(C) ≥ c > 0 for some c which does not
depend on α. Let v be an archimedean place associate with the embedding σ. Then

logMv(f) = logM(x− σα) + logM

(
y − σ(α)x− 1

x− σα

)
where we have extended M(·) to C(x, y) by multiplicativity. By (VI.2.1), logM(x−σα) = log+ |σα|
and

logM

(
y − σ(α)x− 1

x− σα

)
=

∫ 1

0

log+

∣∣∣∣σ(α)e2πit − 1

e2πit − σα

∣∣∣∣ dt.
This last quantity is zero. Indeed σ(α) = σ(α) (recall that L is CM) and, for z, β ∈ C with |z| = 1,∣∣∣∣βz − 1

z − β

∣∣∣∣ = 1.

Thus logMv(f) = log+ |α| for v | ∞. Let now v -∞. An easy computation shows that

Mv(f) = max(|α|v, |α|v, 1) ≤ max(|α|v, 1) max(|α|v, 1).

Putting all together we get 0 < c ≤ ĥ(C) ≤ 2h(α).

Let V be a subvariety of Gnm. We define the “absolute obstruction index” ω(V ) of V as the
minimum of deg(Z) where Z is a hypersurface containing V . Similarly, we define the “rational
obstruction index” ωQ(V ) as the minimum of deg(Z) where Z is a hypersurface defined over Q
containing V . For instance, let α be an algebraic number of degree d. Then ωQ(α) = d. More
generally, let α ∈ Gnm(Q). Then, by standard linear algebra,

ωQ(α) ≤ n[Q(α) : Q]1/n (VI.3.13)

Even more generally, let V be a subvariety of Gmn . Then, if V is irreducible,

ω(V ) ≤ n deg(V )1/codim(V ).

Similarly, if V is defined and irreducible over the rational field, ωQ(V ) ≤ ndeg(V )1/codim(V ). Both
inequalities are special cases of a result of Chardin [18].

It turns out that ωQ(V ), and not the degree of V , is the right invariant to formulate the
sharpest conjectures on µ̂ess(V ) in the “arithmetic case”. Similarly, ω(V ) is the right invariant in
the “geometric case”. Although, in order to get statements depending on ω we need to assume,
in the geometric case, not only that V is not a translate but also that V is not contained in any
proper translate. Indeed, consider a curve C ⊆ Gn−1

m . Let C′ = C×{1} ⊆ Gnm and choose, for l ∈ N,
an irreducible component Vl of [l]−1C′. Then µ̂ess(Vl) 7→ 0, while ω(Vl) = 1 since Vl is contained
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in the hypersurface xn = 1. We shall say that an irreducible variety V is “transverse” if it is not
contained in any proper translate. Similarly, in the arithmetic case we need to assume that V is
not in a torsion variety. Such a V will be called a “weak-transverse” variety. Let α ∈ Gnm(Q).
We remark that the 0-dimensional variety {α} is weak-transverse if and only if α1, . . . , αn are
multiplicatively dependent.

Let V be a weak-transverse subvariety of Gnm. In [2] we conjecture that

µ̂ess(V ) ≥ c(n)

ωQ(V )
(VI.3.14)

for some c(n) > 0. Observe that this conjecture generalizes Lehmer’s one. In [2] (case dimV =
0), [3] (case codimV = 1) and [4] (general case) we prove the following analogue of Dobrowolski’s
theorem on Gnm.

Theorem VI.3.2 Let V be a weak-tranverse subvariety of Gnm of codimension k. Let us assume
that V is not contained in any torsion variety. Then there exist two positive constants c(n) and
κ(k) = (k + 1)(k + 1)!k − k such that

µ̂ess(V ) ≥ c(n)

ω(V )
(log 3ωQ(V ))

−κ(k)
.

Sometimes this theorem produces lower bounds for the height of algebraic numbers which
are even sharper than what is expected by Lehmer’s conjecture. Let α1, . . . , αn multiplicatively
independent algebraic numbers of height ≤ h, lying in a number field of degree d. Then µ̂ess(α) ≤ h
and, by (VI.3.13),

ωQ(α) ≤ nd1/n.

Thus, by theorem VI.3.2,

h ≥ c(n)

d1/n
(log 3d)

−κ(n)
.

for some c(n) > 0.

Assuming that the subvariety V is tranverse, we now look for lower bounds for µ̂ess(V ) which
do not depend on the field of definition of V (geometric case). In [5] we conjecture that

µ̂ess(V ) ≥ c(n)

ωQ(V )
.

for some c(n) > 0. In the same paper we prove:

Theorem VI.3.3 Let V be a transverse subvariety of Gnm of codimension k. Then there exist two

positive constants c(n) and λ(k) =
(
9(3k)(k+1)

)k
such that

µ̂ess(V ) ≥ c(n)

ωQ(V )

(
log 3ωQ(V )

)−λ(k)

.

The proofs of theorems VI.3.2 and VI.3.3 require several technical tools. By contradiction, we
assume in both proofs that the essential minimum is sufficiently small. We then start following
the usual steps of a transcendence proof: interpolation (construction of an auxiliary function),
extrapolation and zero estimates. Concerning the last step, in both cases these proofs become very
technical. In diophantine analysis a classical zero lemma (as [29]) is normally enough to conclude
the proof. On the contrary, in [2] we need a more complicated zero lemma. As a consequence,
this forces to extrapolate over different sets of primes. In Dobrowolski’s proof one construct, using
Siegel’s Lemma, an auxiliary function F which vanishes on α. Then we extrapolate by proving
that F must also vanish at αp at least for small primes p. In the proof of theorem VI.3.2 (in the
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0 dimensional case which is the hardest one) we construct an auxiliary function vanishing on α
and then we extrapolate by proving that F must also vanish at αp1···pn for pj small primes. The
zero lemma we alluded before shows that for some l = p1 · · · pn the obstruction index ωQ(αl) is
pathologically smaller than ωQ(α). Unfortunately, it seems hard to find lower bound for ωQ(αl)
in terms of ωQ(α). Thus, we cannot easily conclude easily the proof. To avoid this problem, we
start again the whole construction replacing α with αl. To ensure that the process end at some
moment, we need a cumbersome induction (“descent step”).

The situation is quite similar in the original proof of theorem VI.3.3. We construct again an
auxiliary function vanishing on V and then we extrapolate by proving that F must also vanish on
ker[p1 · · · pn]V for pj small primes. We need again a variant of a zero lemma which use the fact
that our set of translation (the union of ker[p1 · · · pn]) is actually a union of big subgroups. Using
this new zero lemma we succeed to show that again for some l = p1 · · · pn the obstruction index
ωQ([l]V ) is pathologically small than ωQ(V ). As in the arithmetic situation, we cannot conclude
easily and we need again a cumbersome descent step.

In [10] we recently succeed to drastically simplify the proof of theorem VI.3.3. The new proof
encodes the classical diophantine analysis in an inequality involving some parameters, the essential
minimum of a subvariety of Gnm and two Hilbert’s functions. To decode the diophantine information
we use a sharp lower bound for the Hilbert function due to Chardin and Philippon [19]. Finally,
a delicate reduction process allows us to obtain the desired result. Possibly, this new method also
applies in the arithmetic case.

We now consider the problem of the description of small points. Let V be a non-torsion variety
of Gnm and define

V ∗ = V \
⋃
B⊆V

B torsion

B.

By the former Manin-Mumford conjecture, V ∗ is a Zariski open set, indeed V \V ∗ is a finite union
of torsion varieties. As mentioned in the introduction, an equivalent version of theorem VI.1.2 says
that the height on V ∗(Q) is bounded from below by a positive quantity:

µ̂∗(V ) = inf
α∈V ∗

ĥ(α) > 0.

Remark that obviously µ̂∗(V ) ≤ µ̂ess(V ). Hence one could hope, in analogy to (VI.3.14), that

µ̂∗(V ) ≥ c(n)

ωQ(V )

for some constant c(n) > 0. This lower bound is not always true, as the following example shows.
Let αk be a sequence of algebraic numbers whose height is positive and tends to zero as k → +∞.

Let us consider
Vk = {(αk, x2, x3) ∈ G3

m s.t. α2
k + α3

k − x2 − x3 = 0}.

The height of αk = (αk, α
2
k, α

3
k) ∈ Vk\V ∗k tends to zero and ωQ(V ) ≤ 3, since

Vk ⊆ {x2
1 + x3

1 − x2 − x3 = 0}.

In [6] we formulate the following conjecture. Let V be a non-torsion variety of Gnm defined by
equation of degree ≤ δ with integer coefficients. Then there exists a constant c(n) > 0 such that

µ̂∗(V ) ≥ c(n)

δ
.

In the same article, using a variant of theorem VI.3.2 and an additional induction, we prove this
conjecture up to a logarithmic factor:

µ̂∗(V ) ≥ c(n)

δ
(log 3δ)−κ(n).
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for some c(n) > 0 and where k(n) is as in theorem VI.3.2.

We make a similar analysis in the geometric case. Let V be a tranverse subvariety of Gnm and
define, as in [16],

V 0 = V \
⋃
B⊆V

B.

where the union is now on the set of translates B of tori of dimension 1. Again V \V 0 is an open
set (see [16] and [33]); Bombieri and Zannier prove that, outside a finite set, the height on V 0 is
bounded from below by a positive quantity depending on the degree of V (and not on its field
of definition). More precisely, assume that V is defined by equation of degree ≤ δ. Schmidt [33]

proves that the set of points α ∈ V 0 such that ĥ(α) < q−1 is finite, of cardinality ≤ q, where

q = exp
(

(4n)2δ(2n)δ
)
.

David and Philippon [20] improve this result. They show that the above assertion still hold
choosing:

q = n
(

2n+4d+22D(log(D + 1))2/3
)7d

,

where D is the degree of the Zariski closure of V in (P1)n ⊆ P2n−1 and d is the dimension of V .
Using a variant of theorem VI.3.3 and an additional induction, in [7] we prove that, for all but

finitely many α ∈ V 0(Q),

ĥ(α) ≥ c(n)δ−1 (log(3δ))
−λ(n−1)

,

where c(n) > 0 and λ(k) =
(
9(3k)(k+1)

)k
.

The proof of [7] gives no information on the cardinality of the set of points of pathologically
small height. The new method introduced in [10] leads us to a complete quantitative description
of the small points of a variety V . As a corollary of the main result of [10] we have:

Theorem VI.3.4 Let V ⊆ Gnm be a (not necessarily irreducible) variety of dimension d defined
by equation of degree ≤ δ. Let

θ = δ
(
200n5 log(n2δ)

)dn(n−1)
.

Then,
|V 0(θ−1)| ≤ θn.

Results of this shape have several applications. Using, among other deep ingredients, Schmidt’s
bound for the number of small points in V 0, Evertse, Schlickewei and Schmidt [23] prove an uniform
bound for the number of arithmetic progression in the Skolem-Mahler-Lech theorem (theorem
IV.4.7). They show that the set of zeros of a simple linear recurrence sequence in Q of order n ≥ 1
is the union of at most exp

(
(6n)3n

)
arithmetic progressions. For this kind of application V is a

linear variety. Thus δ = 1 and the important dependance is on n. Using theorem VI.3.4 instead of
Schmidt’s bound we can replace exp

(
(6n)3n

)
by (8n)4n5

in the result of Evertse, Schlickewei and
Schmidt.
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France, 114, 353-383 (1986).

[30] P. Philippon. “Sur des hauteurs alternatives I, II et III”, Math. Ann., 289, 255–283, (1991);
Ann. Inst. Fourier, 44 no 4, 1043–1065 (1994); J. Math. Pures Appl., 74 no 4, 345–365 (1995).
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